Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 109611 by mnjuly1970 last updated on 24/Aug/20

Commented by Rasheed.Sindhi last updated on 25/Aug/20

(x^2 +(1/x^2 ))^3 =(x^2 )^3 +(1/((x^2 )^3 ))+3(x^2 +(1/x^2 ))  (x^2 +(1/x^2 ))^3 =(x^3 )^2 +(1/((x^3 )^2 ))+3(x^2 +(1/x^2 ))                 =((√5)+2)^2 +(1/(((√5)+2)^2 ))+3(x^2 +(1/x^2 ))      =9+4(√5)+(1/(9+4(√5)))+3(x^2 +(1/x^2 ))      =18+3(x^2 +(1/x^2 ))  (x^2 +(1/x^2 ))^3 −3(x^2 +(1/x^2 ))−18=0  a^3 −3a−18=0;    a=x^2 +(1/x^2 )  (a−3)(a^2 +3a+6)=0  a=3  x^2 +(1/x^2 )=3 (Proved)

(x2+1x2)3=(x2)3+1(x2)3+3(x2+1x2)(x2+1x2)3=(x3)2+1(x3)2+3(x2+1x2)=(5+2)2+1(5+2)2+3(x2+1x2)=9+45+19+45+3(x2+1x2)=18+3(x2+1x2)(x2+1x2)33(x2+1x2)18=0a33a18=0;a=x2+1x2(a3)(a2+3a+6)=0a=3x2+1x2=3(Proved)

Answered by ajfour last updated on 25/Aug/20

If   x^2 +(1/x^2 )=3  (^() x+(1/x))^2 = 5  (x^2 +(1/x^2 ))(x+(1/x))=x^3 +(1/x^3 )+x+(1/x)=3(√5)  ⇒ x^3 +(1/x^3 )=2(√5)  or  (x^3 )^2 −2(√5)(x^3 )+1=0  ⇒   x^3 =(√5)+(√(5−1))  = (√5)+2  hence  x^2 +(1/x^2 )=3   (Indeed!)

Ifx2+1x2=3(x+1x)2=5(x2+1x2)(x+1x)=x3+1x3+x+1x=35x3+1x3=25or(x3)225(x3)+1=0x3=5+51=5+2hencex2+1x2=3(Indeed!)

Answered by Her_Majesty last updated on 24/Aug/20

x^3 =2+(√5) ⇒ x_1 =((1+(√5))/2)∧x_2 =ωx_1 ∧x_3 =ω^2 x_1   ⇒ x_1 ^2 =((3+(√5))/2)∧(1/x_1 ^2 )=((3−(√5))/2)∧x_2 ^2  etc easy to get  ⇒ proven  to lazy to write it out

x3=2+5x1=1+52x2=ωx1x3=ω2x1x12=3+521x12=352x22etceasytogetproventolazytowriteitout

Answered by Rasheed.Sindhi last updated on 24/Aug/20

(x^3 )^2 =(2+(√5))^2 =9+4(√5)  x^6 =9+4(√5)  , (1/x^6 ) =9−4(√5)  x^6 +(1/x^6 )=(9+4(√5) )+(9−4(√5))  x^6 +(1/x^6 )=18  Now,  (x^2 +(1/x^2 ))^3 =x^6 +(1/x^6 )+3(x^2 +(1/x^2 ))       =18+3(x^2 +(1/x^2 ))     (x^2 +(1/x^2 ))^3 −3(x^2 +(1/x^2 ))−18=0                 x^2 +(1/x^2 )=u         u^3 −3u−18=0  (u−3)(u^2 +3u+6)=0  u=3  Or x^2 +(1/x^2 )=3  proved

(x3)2=(2+5)2=9+45x6=9+45,1x6=945x6+1x6=(9+45)+(945)x6+1x6=18Now,(x2+1x2)3=x6+1x6+3(x2+1x2)=18+3(x2+1x2)(x2+1x2)33(x2+1x2)18=0x2+1x2=uu33u18=0(u3)(u2+3u+6)=0u=3Orx2+1x2=3proved

Commented by mnjuly1970 last updated on 24/Aug/20

thank you sir..

thankyousir..

Answered by 1549442205PVT last updated on 25/Aug/20

x^3 =2+(√5) ⇒x=^3 (√(2+(√5))) ,(1/x)=(1/(^3 (√(2+(√5))) ))  Note (2+(√5))(2−(√5))=2^2 −((√5))^2 =−1  ⇒ (1/x)=(1/(^3 (√(2+(√5))) ))=((^3 (√(2−(√5))) )/(^3 ((√(2+(√5))) )(^3 (√(2+(√5))) )))  =^3 (√(2−(√5))) .From that  x^2 =(^3 (√(2+(√5))) )^2 =^3 (√(9+4(√5))) ,  (1/x^2 )=(^3 (√(2−(√5))) )^2 =^3 (√(9−4(√5)))    (∗)  Put 9+4(√5)=(x+y(√5))^3 =x^3 +3x^2 y(√5)  +15xy^2 +5y^3 (√5)=(x^3 +15xy^2 )+(3x^2 y+5y^3 )(√5)  ⇔ { ((x^3 +15xy^2 =9(1))),((3x^2 y+5y^3 =4(2))) :}  ⇒4x^3 +60xy^2 =27x^2 y+45y^3 .Put x=ky  we get 4k^3 −27k^2 +60k−45=0  ⇔(k−3)(4k^2 −15k+15)=0⇒k=3  ⇒x=3y.Replace into (1)we get   27y^3 +45y^3 =9⇔72y^3 =9⇔y^3 =(1/8)  ⇒y=(1/2),x=(3/2).Hence    x^2 =^3  (√(9+4(√5))) =^3 (√(((3/2)+((√5)/2))))^3 =(3/2)+((√5)/2)  Similarly,(1/x^2 )=^3 (√(9−4(√5)))=(3/2)−((√5)/2).  ⇒x^2 +(1/x^2 )=3   (Q.E.D)

x3=2+5x=32+5,1x=132+5Note(2+5)(25)=22(5)2=11x=132+5=3253(2+5)(32+5)=325.Fromthatx2=(32+5)2=39+45,1x2=(325)2=3945()Put9+45=(x+y5)3=x3+3x2y5+15xy2+5y35=(x3+15xy2)+(3x2y+5y3)5{x3+15xy2=9(1)3x2y+5y3=4(2)4x3+60xy2=27x2y+45y3.Putx=kyweget4k327k2+60k45=0(k3)(4k215k+15)=0k=3x=3y.Replaceinto(1)weget27y3+45y3=972y3=9y3=18y=12,x=32.Hencex2=39+45=3(32+52)3=32+52Similarly,1x2=3945=3252.x2+1x2=3(Q.E.D)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com