Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 109760 by ajfour last updated on 25/Aug/20

Commented by ajfour last updated on 25/Aug/20

Find u in terms of l, b, g such that  bob hits hanging block.

$${Find}\:{u}\:{in}\:{terms}\:{of}\:{l},\:{b},\:{g}\:{such}\:{that} \\ $$$${bob}\:{hits}\:{hanging}\:{block}. \\ $$$$ \\ $$

Answered by mr W last updated on 25/Aug/20

Commented by mr W last updated on 27/Aug/20

(1/2)mv^2 +mgl(1+sin θ)=(1/2)mu^2   ⇒v^2 =u^2 −2gl(1+sin θ)  mg sin θ=((mv^2 )/l)  ⇒u^2 =gl(2+3 sin θ)  ⇒v^2 =gl sin θ  R=l cos θ  h=l(1−sin θ)−b  t=(R/(v cos ϕ))=(l/(v tan θ))  h=v sin ϕ (l/(v tan θ))−(1/2)g ((l/(v tan θ)))^2   l(1−sin θ)−b=((l cos θ)/(tan θ))−((gl^2 )/(2v^2 tan^2  θ))  ((gl^2 )/(2v^2 tan^2  θ))=b+l((1/(sin  θ))−1)  v^2 =((gl^2 )/(2 tan^2  θ [b+l(((1−sin θ)/(sin θ)))]))  gl sin θ=((gl^2 )/(2 tan^2  θ [b+l(((1−sin θ)/(sin θ)))]))  sin θ=(1/(2 tan^2  θ ((b/l)−1+(1/(sin θ)))))  2 sin^3  θ ((b/l)−1+(1/(sin θ)))=1−sin^2  θ  ⇒2(1−(b/l))sin^3  θ−3 sin^2  θ+1=0  ⇒(1/(sin θ))=2 sin [(1/3) sin^(−1) (1−(b/l))+((2π)/3)]  ⇒u=(√({2+(3/(2 sin [(1/3) sin^(−1) (1−(b/l))+((2π)/3)]))}gl))

$$\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +{mgl}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}{mu}^{\mathrm{2}} \\ $$$$\Rightarrow{v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}{gl}\left(\mathrm{1}+\mathrm{sin}\:\theta\right) \\ $$$${mg}\:\mathrm{sin}\:\theta=\frac{{mv}^{\mathrm{2}} }{{l}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} ={gl}\left(\mathrm{2}+\mathrm{3}\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{v}^{\mathrm{2}} ={gl}\:\mathrm{sin}\:\theta \\ $$$${R}={l}\:\mathrm{cos}\:\theta \\ $$$${h}={l}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)−{b} \\ $$$${t}=\frac{{R}}{{v}\:\mathrm{cos}\:\varphi}=\frac{{l}}{{v}\:\mathrm{tan}\:\theta} \\ $$$${h}={v}\:\mathrm{sin}\:\varphi\:\frac{{l}}{{v}\:\mathrm{tan}\:\theta}−\frac{\mathrm{1}}{\mathrm{2}}{g}\:\left(\frac{{l}}{{v}\:\mathrm{tan}\:\theta}\right)^{\mathrm{2}} \\ $$$${l}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)−{b}=\frac{{l}\:\mathrm{cos}\:\theta}{\mathrm{tan}\:\theta}−\frac{{gl}^{\mathrm{2}} }{\mathrm{2}{v}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$$$\frac{{gl}^{\mathrm{2}} }{\mathrm{2}{v}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}={b}+{l}\left(\frac{\mathrm{1}}{\mathrm{sin}\:\:\theta}−\mathrm{1}\right) \\ $$$${v}^{\mathrm{2}} =\frac{{gl}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\theta\:\left[{b}+{l}\left(\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{sin}\:\theta}\right)\right]} \\ $$$${gl}\:\mathrm{sin}\:\theta=\frac{{gl}^{\mathrm{2}} }{\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\theta\:\left[{b}+{l}\left(\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{sin}\:\theta}\right)\right]} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\theta\:\left(\frac{{b}}{{l}}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\theta}\right)} \\ $$$$\mathrm{2}\:\mathrm{sin}^{\mathrm{3}} \:\theta\:\left(\frac{{b}}{{l}}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\theta}\right)=\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{1}−\frac{{b}}{{l}}\right)\mathrm{sin}^{\mathrm{3}} \:\theta−\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{sin}\:\theta}=\mathrm{2}\:\mathrm{sin}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{b}}{{l}}\right)+\frac{\mathrm{2}\pi}{\mathrm{3}}\right] \\ $$$$\Rightarrow{u}=\sqrt{\left\{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{2}\:\mathrm{sin}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{b}}{{l}}\right)+\frac{\mathrm{2}\pi}{\mathrm{3}}\right]}\right\}{gl}} \\ $$

Commented by ajfour last updated on 27/Aug/20

l(1−sin θ)−b=((v^2 sin^2 ϕ)/(2g))    h= 1−sin θ−(b/l)   =((sin θcos^2 θ)/2)      sin θ(2+cos^2 θ)=2(1−(b/l))      sin θ(3−sin^2 θ)=2(1−(b/l))  ..    Sir i think eq. for sin θ should be     this...  ....

$${l}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)−{b}=\frac{{v}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \varphi}{\mathrm{2}{g}} \\ $$$$\:\:{h}=\:\mathrm{1}−\mathrm{sin}\:\theta−\frac{{b}}{{l}}\:\:\:=\frac{\mathrm{sin}\:\theta\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{sin}\:\theta\left(\mathrm{2}+\mathrm{cos}\:^{\mathrm{2}} \theta\right)=\mathrm{2}\left(\mathrm{1}−\frac{{b}}{{l}}\right) \\ $$$$\:\:\:\:\mathrm{sin}\:\theta\left(\mathrm{3}−\mathrm{sin}\:^{\mathrm{2}} \theta\right)=\mathrm{2}\left(\mathrm{1}−\frac{{b}}{{l}}\right) \\ $$$$.. \\ $$$$\:\:{Sir}\:{i}\:{think}\:{eq}.\:{for}\:\mathrm{sin}\:\theta\:{should}\:{be} \\ $$$$\:\:\:{this}... \\ $$$$.... \\ $$

Commented by ajfour last updated on 27/Aug/20

mrW sir, dont you think even this  eq. is correct..?

$${mrW}\:{sir},\:{dont}\:{you}\:{think}\:{even}\:{this} \\ $$$${eq}.\:{is}\:{correct}..? \\ $$

Commented by mr W last updated on 27/Aug/20

in line 1 you assumed that the ball  reaches the highest point when it hits  the block, i think this is not correct.

$${in}\:{line}\:\mathrm{1}\:{you}\:{assumed}\:{that}\:{the}\:{ball} \\ $$$${reaches}\:{the}\:{highest}\:{point}\:{when}\:{it}\:{hits} \\ $$$${the}\:{block},\:{i}\:{think}\:{this}\:{is}\:{not}\:{correct}. \\ $$

Commented by mr W last updated on 27/Aug/20

Commented by ajfour last updated on 27/Aug/20

thanks sir, confusion clear.

$${thanks}\:{sir},\:{confusion}\:{clear}. \\ $$

Commented by mr W last updated on 27/Aug/20

u=(√({2+(3/(2 sin [(1/3) sin^(−1) (1−(b/l))+((2π)/3)]))}gl))

$${u}=\sqrt{\left\{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{2}\:\mathrm{sin}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−\frac{{b}}{{l}}\right)+\frac{\mathrm{2}\pi}{\mathrm{3}}\right]}\right\}{gl}} \\ $$

Commented by mr W last updated on 29/Aug/20

Commented by ajfour last updated on 29/Aug/20

nice observation, Sir.

$${nice}\:{observation},\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com