Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 109818 by Study last updated on 25/Aug/20

tanx+tan2x=1  find the general solution

$${tanx}+{tan}\mathrm{2}{x}=\mathrm{1} \\ $$$${find}\:{the}\:{general}\:{solution} \\ $$

Commented by Dwaipayan Shikari last updated on 25/Aug/20

x=kπ+((261)/(720))π  (approximately)  (k∈Z)

$${x}={k}\pi+\frac{\mathrm{261}}{\mathrm{720}}\pi\:\:\left({approximately}\right)\:\:\left({k}\in\mathbb{Z}\right) \\ $$

Commented by Study last updated on 25/Aug/20

what is the practice?

$${what}\:{is}\:{the}\:{practice}? \\ $$

Commented by Dwaipayan Shikari last updated on 25/Aug/20

tanx+((2tanx)/(1−tan^2 x))=1  t+((2t)/(1−t^2 ))=1  t−t^3 +2t=1−t^2   t^3 −t^2 −3t+1=0  t=2.17....  t=another solution  tanx=2.17...  x=kπ+((261)/(720))π   (approx)

$${tanx}+\frac{\mathrm{2}{tanx}}{\mathrm{1}−{tan}^{\mathrm{2}} {x}}=\mathrm{1} \\ $$$${t}+\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }=\mathrm{1} \\ $$$${t}−{t}^{\mathrm{3}} +\mathrm{2}{t}=\mathrm{1}−{t}^{\mathrm{2}} \\ $$$${t}^{\mathrm{3}} −{t}^{\mathrm{2}} −\mathrm{3}{t}+\mathrm{1}=\mathrm{0} \\ $$$${t}=\mathrm{2}.\mathrm{17}.... \\ $$$${t}={another}\:{solution} \\ $$$${tanx}=\mathrm{2}.\mathrm{17}... \\ $$$${x}={k}\pi+\frac{\mathrm{261}}{\mathrm{720}}\pi\:\:\:\left({approx}\right) \\ $$

Commented by Study last updated on 25/Aug/20

help me

$${help}\:{me} \\ $$

Commented by Study last updated on 25/Aug/20

i need your help

$${i}\:{need}\:{your}\:{help} \\ $$

Commented by Study last updated on 25/Aug/20

how we can find the t value from the  third degree equation?

$${how}\:{we}\:{can}\:{find}\:{the}\:{t}\:{value}\:{from}\:{the} \\ $$$${third}\:{degree}\:{equation}? \\ $$

Commented by Her_Majesty last updated on 25/Aug/20

in this case you need the trigonometric  solution method. search for it on the web  anyway better use approximation  we get  t_1 ≈−1.48119  t_2 ≈.311108  t_3 ≈2.17001  ⇒  x_1 =−.976957+nπ  x_2 =.301616+nπ  x_3 =1.13899+nπ

$${in}\:{this}\:{case}\:{you}\:{need}\:{the}\:{trigonometric} \\ $$$${solution}\:{method}.\:{search}\:{for}\:{it}\:{on}\:{the}\:{web} \\ $$$${anyway}\:{better}\:{use}\:{approximation} \\ $$$${we}\:{get} \\ $$$${t}_{\mathrm{1}} \approx−\mathrm{1}.\mathrm{48119} \\ $$$${t}_{\mathrm{2}} \approx.\mathrm{311108} \\ $$$${t}_{\mathrm{3}} \approx\mathrm{2}.\mathrm{17001} \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{1}} =−.\mathrm{976957}+{n}\pi \\ $$$${x}_{\mathrm{2}} =.\mathrm{301616}+{n}\pi \\ $$$${x}_{\mathrm{3}} =\mathrm{1}.\mathrm{13899}+{n}\pi \\ $$

Answered by 1549442205PVT last updated on 26/Aug/20

We need the condition x≠(π/2),x≠(π/4)  tanx+((2tanx)/(1−tan^2 x))=1⇔tanx−tan^3 x+2tanx  =1−tan^2 x⇔tan^3 x−tan^2 x−3tanx+1=0  ⇒cot^3 x−3cot^2 x−cotx+1=0  (cotx−1)^3 −4(cotx−1)−2=0  Put cotx−1=y we get  y^3 −4y−2=0(2)  Set y=(4/( (√3)))z.Replace into (2)we get  ((64)/(3(√3)))z^3 −((16)/( (√3)))z−2=0.Multiplying two  sides by ((3(√3))/(16)) we obtain:  4z^3 −3z−((3(√3))/8)=0(∗).On the other hands,  we known that 4cos^3 u−3cosu−cos3u=0  Hence ,Put cos3u=((3(√3))/8)(3) then we see  z=cosu is roots of the equation (∗)  (3)⇔3u=cos^(−1) (((3(√3))/8))+2kπ⇔u=(1/3)[cos^(−1) (((3(√3))/8))+2kπ]  Thus,the equation (∗)has three roots  are z=cos(1/3)[cos^(−1) (((3(√3))/8))+2kπ](k=0,1,2)  ⇒y=(4/( (√3)))z=(4/( (√3)))cos(1/3)[cos^(−1) (((3(√3))/8))+2kπ]  ⇒cotx=y+1=1+(4/( (√3)))cos(1/3)[cos^(−1) (((3(√3))/8))+2kπ]  ⇒tanx=(1/(1+(4/( (√3)))cos(1/3)[cos^(−1) (((3(√3))/8))+2kπ]))  Thus,the given equation has roots are  x=tan^(−1) {(1/(1+(4/( (√3)))cos(1/3)[cos^(−1) (((3(√3))/8))+2kπ]))}+mπ  where k=0,1,2 and m∈Z

$$\mathrm{We}\:\mathrm{need}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{x}\neq\frac{\pi}{\mathrm{2}},\mathrm{x}\neq\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{tanx}+\frac{\mathrm{2tanx}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \mathrm{x}}=\mathrm{1}\Leftrightarrow\mathrm{tanx}−\mathrm{tan}^{\mathrm{3}} \mathrm{x}+\mathrm{2tanx} \\ $$$$=\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \mathrm{x}\Leftrightarrow\mathrm{tan}^{\mathrm{3}} \mathrm{x}−\mathrm{tan}^{\mathrm{2}} \mathrm{x}−\mathrm{3tanx}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cot}^{\mathrm{3}} \mathrm{x}−\mathrm{3cot}^{\mathrm{2}} \mathrm{x}−\mathrm{cotx}+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{cotx}−\mathrm{1}\right)^{\mathrm{3}} −\mathrm{4}\left(\mathrm{cotx}−\mathrm{1}\right)−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{Put}\:\mathrm{cotx}−\mathrm{1}=\mathrm{y}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{y}^{\mathrm{3}} −\mathrm{4y}−\mathrm{2}=\mathrm{0}\left(\mathrm{2}\right) \\ $$$$\mathrm{Set}\:\mathrm{y}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\mathrm{z}.\mathrm{Replace}\:\mathrm{into}\:\left(\mathrm{2}\right)\mathrm{we}\:\mathrm{get} \\ $$$$\frac{\mathrm{64}}{\mathrm{3}\sqrt{\mathrm{3}}}\mathrm{z}^{\mathrm{3}} −\frac{\mathrm{16}}{\:\sqrt{\mathrm{3}}}\mathrm{z}−\mathrm{2}=\mathrm{0}.\mathrm{Multiplying}\:\mathrm{two} \\ $$$$\mathrm{sides}\:\mathrm{by}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{16}}\:\mathrm{we}\:\mathrm{obtain}: \\ $$$$\mathrm{4z}^{\mathrm{3}} −\mathrm{3z}−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}=\mathrm{0}\left(\ast\right).\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands}, \\ $$$$\mathrm{we}\:\mathrm{known}\:\mathrm{that}\:\mathrm{4cos}^{\mathrm{3}} \mathrm{u}−\mathrm{3cosu}−\mathrm{cos3u}=\mathrm{0} \\ $$$$\mathrm{Hence}\:,\mathrm{Put}\:\mathrm{cos3u}=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\left(\mathrm{3}\right)\:\mathrm{then}\:\mathrm{we}\:\mathrm{see} \\ $$$$\mathrm{z}=\mathrm{cosu}\:\mathrm{is}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\left(\ast\right) \\ $$$$\left(\mathrm{3}\right)\Leftrightarrow\mathrm{3u}=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)+\mathrm{2k}\pi\Leftrightarrow\mathrm{u}=\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)+\mathrm{2k}\pi\right] \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{equation}\:\left(\ast\right)\mathrm{has}\:\mathrm{three}\:\mathrm{roots} \\ $$$$\mathrm{are}\:\mathrm{z}=\mathrm{cos}\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)+\mathrm{2k}\pi\right]\left(\mathrm{k}=\mathrm{0},\mathrm{1},\mathrm{2}\right) \\ $$$$\Rightarrow\mathrm{y}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\mathrm{z}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)+\mathrm{2k}\pi\right] \\ $$$$\Rightarrow\mathrm{cotx}=\mathrm{y}+\mathrm{1}=\mathrm{1}+\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)+\mathrm{2k}\pi\right] \\ $$$$\Rightarrow\mathrm{tanx}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)+\mathrm{2k}\pi\right]} \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{roots}\:\mathrm{are} \\ $$$$\mathrm{x}=\mathrm{tan}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\right)+\mathrm{2k}\pi\right]}\right\}+\mathrm{m}\pi \\ $$$$\mathrm{where}\:\mathrm{k}=\mathrm{0},\mathrm{1},\mathrm{2}\:\mathrm{and}\:\mathrm{m}\in\mathbb{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com