Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 109834 by 675480065 last updated on 25/Aug/20

Commented by 675480065 last updated on 25/Aug/20

Greetings.  please i need help

Greetings.pleaseineedhelp

Answered by mathmax by abdo last updated on 25/Aug/20

1)u_0 =1 ,u_1 =3 and u_(n+1) =3u_n +4u_(n−1)  ⇒  u_(n+2) =3u_(n+1) +4u_n  ⇒u_(n+2) −3u_(n+1) −4u_n =0 →x^2 −3x −4 =0  Δ =9+16 =25 ⇒x_1 =((3+5)/2) =4 and x_2 =((3−5)/2) =−1 ⇒  u_n =a 4^n  +b(−1)^n   we have u_0 =a+b =1 and u_1 =4a−b =3 ⇒   { ((a+b=1       _(⇒         { ((b=1−a)),((4a−1+a =3 ⇒)) :}) )),((4a−b =3 )) :}   { ((5a =4)),((b=1−a ⇒              { ((a =(4/5) ⇒      { (),() :})),((b =(1/5))) :})) :}  ⇒ u_n =(4/5).4^n  +(1/5)(−1)^n  ⇒u_n =(1/5){ 4^(n+1)  +(−1)^n }  ⇒ u_2 =(1/5){ 4^3  +1} =(1/5){65} =((65)/5)

1)u0=1,u1=3andun+1=3un+4un1un+2=3un+1+4unun+23un+14un=0x23x4=0Δ=9+16=25x1=3+52=4andx2=352=1un=a4n+b(1)nwehaveu0=a+b=1andu1=4ab=3{a+b=1{b=1a4a1+a=34ab=3{5a=4b=1a{a=45{b=15un=45.4n+15(1)nun=15{4n+1+(1)n}u2=15{43+1}=15{65}=655

Commented by 675480065 last updated on 26/Aug/20

thanks

thanks

Commented by abdomsup last updated on 26/Aug/20

you are welcome

youarewelcome

Answered by Aziztisffola last updated on 25/Aug/20

 (i) u_2 =3u_1 +4u_0 =9+4=13   (ii) u_(n+1) −4u_n =−(u_n −4u_(n−1) )                               =−(−(u_(n−2) −4u_(n−3) ))                               =(−1)^2 (u_(n−2) −4u_(n−3) )                               =(−1)^3 (u_(n−4) −4u_(n−5) )                               =..............................                               =(−1)^(n+1) (u_1 −4u_0 )   (iii) u_(n+1) −4u_n =(−1)^(n+1) (u_1 −4u_0 )   =(−1)^(n+1) (3−4)=(−1)^(n+2)    ⇒u_(n+1) −4u_n =(−1)^(n+2)   ⇒u_(n+1) =(−1)^(n+2) +4u_n

(i)u2=3u1+4u0=9+4=13(ii)un+14un=(un4un1)=((un24un3))=(1)2(un24un3)=(1)3(un44un5)=..............................=(1)n+1(u14u0)(iii)un+14un=(1)n+1(u14u0)=(1)n+1(34)=(1)n+2un+14un=(1)n+2un+1=(1)n+2+4un

Answered by mathmax by abdo last updated on 25/Aug/20

2)  i think tbe relstion is u_(n+1) −4u_n =(−1)^n (u_1 −4u_0 )  let prove it by recurrence   n =0 ⇒u_1 −4u_0 =(−1)^o (u_1 −4u_0 ) the relstion is true   let suppose  u_(n+1) −4u_n =(−1)^n (u_1 −4u_0 ) and show  u_(n+2) −4u_(n+1) =(−1)^(n+1) (u_1 −4u_0 ) we have u_(n+1) =3u_n +4u_(n−1)  ⇒  u_(n+2) =3u_(n+1) +4u_n  ⇒u_(n+2) −4u_(n+1) =−u_(n+1) +4u_n   =−(u_(n+1) −4u_n ) =−(−1)^n (u_1 −4u_0 ) =(−1)^(n+1) (u_1 −4u_0 )  the relation is true st term n+1

2)ithinktberelstionisun+14un=(1)n(u14u0)letproveitbyrecurrencen=0u14u0=(1)o(u14u0)therelstionistrueletsupposeun+14un=(1)n(u14u0)andshowun+24un+1=(1)n+1(u14u0)wehaveun+1=3un+4un1un+2=3un+1+4unun+24un+1=un+1+4un=(un+14un)=(1)n(u14u0)=(1)n+1(u14u0)therelationistruesttermn+1

Commented by 675480065 last updated on 26/Aug/20

thanks so much.  is it possible if you can complete it.? pls

thankssomuch.isitpossibleifyoucancompleteit.?pls

Terms of Service

Privacy Policy

Contact: info@tinkutara.com