Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109839 by john santu last updated on 25/Aug/20

 ((JS)/(≈♥≈))  (1) ∫ (((√(x+1))−(√(x−1)))/( (√(x+1))+(√(x−1)))) dx  (2) ∫ ((√(tan x))/(1+(√(tan x)) )) dx

JS(1)x+1x1x+1+x1dx(2)tanx1+tanxdx

Commented by Her_Majesty last updated on 25/Aug/20

(1) =∫x−(√(x^2 −1))dx  (2) let t=(√(tanx))  both are easiest

(1)=xx21dx(2)lett=tanxbothareeasiest

Answered by Dwaipayan Shikari last updated on 25/Aug/20

∫((((√(x+1))−(√(x−1)))^2 )/(x+1−x+1))  ∫((2x−2(√(x^2 −1)))/2)=∫x−∫(√(x^2 −1)) =(x^2 /2)−(x/2)(√(x^2 −1))+(1/2)log(x+(√(x^2 −1)))+C

(x+1x1)2x+1x+12x2x212=xx21=x22x2x21+12log(x+x21)+C

Answered by bobhans last updated on 26/Aug/20

(⇔) (((√(x+1))−(√(x−1)))/( (√(x+1))+(√(x−1)))) = ((((√(x+1))−(√(x−1)))^2 )/((x+1)−(x−1)))         = ((x+1+x−1−2(√(x^2 −1)))/2)=((2x−2(√(x^2 −1)))/2)         = x−(√(x^2 −1))  now I=∫ (x−(√(x^2 −1))) dx = (x^2 /2)−∫(√(x^2 −1)) dx  let x = sec s ⇒dx = sec s tan s ds  I=(x^2 /2)−∫ sec s tan^2 s ds   I=(x^2 /2)−∫ sec s (sec^2 s−1)ds  I=(x^2 /2)+ln ∣sec s + tan s∣ −∫sec^3 s ds  let I_2 =∫sec^3 s ds = ∫ sec s d(tan s)  I_2 = sec s tan s −∫sec s tan^2 s ds  I_2 =sec s tan s −∫(sec^3 s −sec s )ds  2I_2 =sec s tan s + ln ∣sec s + tan s∣   I_2 =(1/2)sec s tan s + (1/2)ln ∣sec s+tan s∣  we conclude I=(x^2 /2)+(1/2)ln ∣sec s+tan s∣−(1/2)sec s tan s +c  I=((x^2 +ln ∣x+(√(x^2 −1))∣−x(√(x^2 −1))+C)/2)

()x+1x1x+1+x1=(x+1x1)2(x+1)(x1)=x+1+x12x212=2x2x212=xx21nowI=(xx21)dx=x22x21dxletx=secsdx=secstansdsI=x22secstan2sdsI=x22secs(sec2s1)dsI=x22+lnsecs+tanssec3sdsletI2=sec3sds=secsd(tans)I2=secstanssecstan2sdsI2=secstans(sec3ssecs)ds2I2=secstans+lnsecs+tansI2=12secstans+12lnsecs+tansweconcludeI=x22+12lnsecs+tans12secstans+cI=x2+lnx+x21xx21+C2

Answered by bobhans last updated on 26/Aug/20

(2) set tan x = z^2  ⇒sec^2 x dx = 2z dz  ⇒ dx = ((2z dz)/(1+z^4 ))   I=∫ (z/(1+z))×((2z dz)/(1+z^4 )) = ∫((2z^2 )/((1+z)(1+z^4 )))dz  ((2z^2 )/((1+z)(1+z^4 ))) = (A/(1+z)) + ((Bz^3 +Cz^2 +Dz+E)/(1+z^4 ))  2z^2 =A(1+z^4 )+(Bz^3 +Cz^2 +Dz+E)(1+z)  z=0⇒0=A+E  z=−1⇒2=2A,A=1 ∧E=−1  z=1⇒2=2+(B+C+D−1).2                0 = (B+C+D−1)2→B+C+D=1  continue

(2)settanx=z2sec2xdx=2zdzdx=2zdz1+z4I=z1+z×2zdz1+z4=2z2(1+z)(1+z4)dz2z2(1+z)(1+z4)=A1+z+Bz3+Cz2+Dz+E1+z42z2=A(1+z4)+(Bz3+Cz2+Dz+E)(1+z)z=00=A+Ez=12=2A,A=1E=1z=12=2+(B+C+D1).20=(B+C+D1)2B+C+D=1continue

Commented by Sarah85 last updated on 26/Aug/20

you cannot set up ((Bz+C)/(1+z^4 ))

youcannotsetupBz+C1+z4

Commented by bobhans last updated on 26/Aug/20

oo yes it should be ((Bz^3 +Cz^2 +Dz+E)/(1+z^4 ))

ooyesitshouldbeBz3+Cz2+Dz+E1+z4

Answered by Sarah85 last updated on 26/Aug/20

∫((√(tan x))/(1+(√(tan x))))dx  t=(√(tan x)) leads to  2∫(t^2 /((t+1)(t^4 +1)))dt=  =∫(dt/(t+1))−∫(((t−1)^2 (t+1))/((t^4 +1)))dt=  =∫(dt/(t+1))−((1−(√2))/2)∫((t+1)/(t^2 −(√2)t+1))dt−((1+(√2))/2)∫((t+1)/(t^2 +(√2)t+1))dt  ∫(dt/(t+1))=ln (t+1)  −((1−(√2))/2)∫((t+1)/(t^2 −(√2)t+1))dt=−((1−(√2))/4)ln (t^2 −(√2)t+1) +(1/2)tan^(−1)  ((√2)t−1)  −((1+(√2))/2)∫((t+1)/(t^2 +(√2)t+1))dt=−((1+(√2))/4)ln (t^2 +(√2)t+1) −(1/2)tan^(−1)  ((√2)t+1)  now it′s easy to complete

tanx1+tanxdxt=tanxleadsto2t2(t+1)(t4+1)dt==dtt+1(t1)2(t+1)(t4+1)dt==dtt+1122t+1t22t+1dt1+22t+1t2+2t+1dtdtt+1=ln(t+1)122t+1t22t+1dt=124ln(t22t+1)+12tan1(2t1)1+22t+1t2+2t+1dt=1+24ln(t2+2t+1)12tan1(2t+1)nowitseasytocomplete

Terms of Service

Privacy Policy

Contact: info@tinkutara.com