Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109854 by bemath last updated on 26/Aug/20

 ((★be★)/(math))  (1)∫ ((3+2cos x)/((2+3cos x)^3 )) dx   (2)((√(2+(√3))) )^y −((√(2−(√3))) )^y  = 14       y=?

bemath(1)3+2cosx(2+3cosx)3dx(2)(2+3)y(23)y=14y=?

Commented by bemath last updated on 26/Aug/20

thank you both

thankyouboth

Answered by john santu last updated on 26/Aug/20

 consider (√(2+(√3))) =(√(((((2+(√3))(2−(√(3))))/(2−(√3))))))                       =(√(1/(2−(√3)))) = (1/( (√(2−(√3)))))  set ((√(2+(√3))) )^y = t   ⇔ t−(1/t) = 14 ⇒t^2 −1=14t      t^2 −14t−1=0 ,(t−7)^2 −50=0      t= 7+5(√2) ; ((√(2+(√3))) )^y =7+5(√2)      (2+(√3) )^y =(7+5(√2))^2        (2+(√3))^y =99+70(√2)        y = ((ln (99+70(√2)))/(ln (2+(√3))))≈ 4.015497788

consider2+3=((2+3)(23)23)=123=123set(2+3)y=tt1t=14t21=14tt214t1=0,(t7)250=0t=7+52;(2+3)y=7+52(2+3)y=(7+52)2(2+3)y=99+702y=ln(99+702)ln(2+3)4.015497788

Answered by Her_Majesty last updated on 26/Aug/20

(√(2+(√3)))=(((√6)+(√2))/2)  (√(2−(√3)))=(((√6)−(√2))/2)=(1/( (√(2+(√3)))))  a^y −(1/a^y )=2sinh(ylna)=14 ⇒ y=((sinh^(−1) 7)/(lna))=  =((2sinh^(−1) 7)/(ln(2+(√3))))=((2ln(7+5(√2)))/(ln(2+(√3))))

2+3=6+2223=622=12+3ay1ay=2sinh(ylna)=14y=sinh17lna==2sinh17ln(2+3)=2ln(7+52)ln(2+3)

Answered by Sarah85 last updated on 26/Aug/20

∫((3+2cos x)/((2+3cos x)^3 ))dx  as usual: t=tan (x/2)  −2∫(((t^2 +1)(t^2 +5))/((t^2 −5)^3 ))dt  I prefer Ostrogradski′s Method I learned from  Sir MJS  ⇒  ((t(7t^2 −5))/(5(t^2 −5)^2 ))−(3/5)∫(dt/(t^2 −5))=((t(7t^2 −5))/(5(t^2 −5)^2 ))−((3(√5))/(50))ln (((√5)t−5)/( (√5)t+5)) =...

3+2cosx(2+3cosx)3dxasusual:t=tanx22(t2+1)(t2+5)(t25)3dtIpreferOstrogradskisMethodIlearnedfromSirMJSt(7t25)5(t25)235dtt25=t(7t25)5(t25)23550ln5t55t+5=...

Answered by 1549442205PVT last updated on 26/Aug/20

F=∫((3+2cosx)/((2+3cosx)^3 ))dx.Put t=tan(x/2)  ⇒dt=(1/2)(1+t^2 )dx⇒dx=((2dt)/(1+t^2 ))  2+3cosx=2+3((1−t^2 )/(1+t^2 ))=((−t^2 +5)/(1+t^2 ))  3+2cosx=3+((2(1−t^2 ))/(1+t^2 ))=((t^2 +5)/(1+t^2 ))  F=2∫(((t^2 +5)(t^2 +1)dt)/((−t^2 +5)^3 ))=−2∫(((t^2 +5)(t^2 +1)dt)/((t^2 −5)^3 ))  Since  (t^2 +5)(t^2 +1)=t^4 +6t^2 +5  =(t^2 −5)^2 +16(t^2 −5)+60 ,we have  F=−∫[(2/(t^2 −5))+((32)/((t^2 −5)^2 ))+((60)/((t^2 −5)^3 ))]dt  we have     (1/(t^2 −5))=(1/((t+(√5))(t−(√5))))  =(1/(2(√5)))((1/(t−(√5)))−(1/(t+(√5)))). Put a= (1/(t−(√5)))  b=(1/(t+(√5)))⇒ab=(1/(2(√5)))(a−b).Hence,  (1/((t^2 −5)^2 ))=(ab)^2 =(1/(20))(a^2 +b^2 −(1/( (√5)))(a−b))  (1/((t^2 −5)^3 ))=(ab)^3 =(1/(40(√5)))(a^3 −b^3 −3ab(a−b))  =(1/(40(√5)))(a^3 −b^3 −(3/(2(√5)))(a−b)^2 )  =(1/(40(√5)))(a^3 −b^3 )−(3/(400))(a^2 +b^2 −(1/( (√5)))(a−b))  ∫a^3 dt=∫(dt/((t−(√5))^3 ))=((−1)/(2(t−(√5))^2 )),∫b^3 dt=((−1)/(2(t+(√5))^2 ))⇒∫(a^3 −b^3 )dt=(1/2)((1/((t+(√5))^2 ))−(1/((t−(√5))^2 )))=((−2t(√5))/((t^2 −5)^2 )) (1)  ∫a^2 dt=∫(dt/((t−(√5))^2 ))=((−1)/(t−(√5))),∫b^2 dt=((−1)/(t+(√5)))⇒∫(a^2 +b^2 )dt=−((1/(t−(√5)))+(1/(t+(√5))))=((−2t)/(t^2 −5))(2)  ∫(a−b)dt=∫((1/(t−(√5)))−(1/(t+(√5))))dt=ln∣((t−(√5))/(t+(√5)))∣(3)  Consequemtly,  2ab+32(ab)^2 +120(ab)^3 =(1/( (√5)))(a−b)+((16)/(10))(a^2 +b^2 )−((16)/(10(√5)))(a−b)+(3/( (√5)))(a^3 −b^3 )−(9/(10))(a^2 +b^2 )+(9/(10(√5)))(a−b)  =(3/( (√5)))(a^3 −b^3 )+(7/(10))(a^2 +b^2 )+(3/(10(√5)))(a−b)  From (1)(2)(3)we get  F=−{(3/( (√5)))×((2t(√5))/((t^2 −5)^2 ))+(7/(10))×((−2t)/(t^2 −5))+(3/(10(√5)))×ln∣((t−(√5))/(t+(√5)))∣}  =((6t)/((t^2 −5)^2 ))+((7t)/(5(t^2 −5)))−(3/(10(√5)))ln∣((t−(√5))/(t+(√5)))∣=((t(7t^2 −5))/(5(t^2 −5)))−(3/(10(√5)))ln∣((t−(√5))/(t+(√5)))∣  =((tan(x/2)(7tan^2 (x/2)−5))/(5(tan^2 (x/2)−5)^2 ))−((3(√5))/(50))ln∣((tan(x/2)−(√5))/(tan(x/2)+(√5)))∣  2)Since (√(2+(√3))) .(√(2−(√3)))=(√((2+(√3))(2−(√3))))  =(√(4−3))=1⇒((√(2+(√3))))^y .((√(2−(√3))))^y =1,so  Put ((√(2+(√3))))^y =x(x>0)we get  ((√(2−(√3))))^y =(1/x).Hence  ((√(2+(√3))) )^y −((√(2−(√3))) )^y  = 14  ⇔x−(1/x)=14⇔x^2 −14x−1=0  Δ′=7^2 +1=50=(5(√2))^2 ⇒x=7+5(√2)  (root x=7−5(√2)<0⇒rejected).Hence  ((√(2+(√3))))^y =7+5(√2) ⇒yln((√(2+(√3))))=ln(7+5(√2))  ⇔y=((ln(7+5(√2)))/(ln((√(2+(√3))))))≈4.0155

F=3+2cosx(2+3cosx)3dx.Putt=tanx2dt=12(1+t2)dxdx=2dt1+t22+3cosx=2+31t21+t2=t2+51+t23+2cosx=3+2(1t2)1+t2=t2+51+t2F=2(t2+5)(t2+1)dt(t2+5)3=2(t2+5)(t2+1)dt(t25)3Since(t2+5)(t2+1)=t4+6t2+5=(t25)2+16(t25)+60,wehaveF=[2t25+32(t25)2+60(t25)3]dtwehave1t25=1(t+5)(t5)=125(1t51t+5).Puta=1t5b=1t+5ab=125(ab).Hence,1(t25)2=(ab)2=120(a2+b215(ab))1(t25)3=(ab)3=1405(a3b33ab(ab))=1405(a3b3325(ab)2)=1405(a3b3)3400(a2+b215(ab))a3dt=dt(t5)3=12(t5)2,b3dt=12(t+5)2(a3b3)dt=12(1(t+5)21(t5)2)=2t5(t25)2(1)a2dt=dt(t5)2=1t5,b2dt=1t+5(a2+b2)dt=(1t5+1t+5)=2tt25(2)(ab)dt=(1t51t+5)dt=lnt5t+5(3)Consequemtly,2ab+32(ab)2+120(ab)3=15(ab)+1610(a2+b2)16105(ab)+35(a3b3)910(a2+b2)+9105(ab)=35(a3b3)+710(a2+b2)+3105(ab)From(1)(2)(3)wegetF={35×2t5(t25)2+710×2tt25+3105×lnt5t+5}=6t(t25)2+7t5(t25)3105lnt5t+5∣=t(7t25)5(t25)3105lnt5t+5=tanx2(7tan2x25)5(tan2x25)23550lntanx25tanx2+52)Since2+3.23=(2+3)(23)=43=1(2+3)y.(23)y=1,soPut(2+3)y=x(x>0)weget(23)y=1x.Hence(2+3)y(23)y=14x1x=14x214x1=0Δ=72+1=50=(52)2x=7+52(rootx=752<0rejected).Hence(2+3)y=7+52yln(2+3)=ln(7+52)y=ln(7+52)ln(2+3)4.0155

Terms of Service

Privacy Policy

Contact: info@tinkutara.com