Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109855 by aurpeyz last updated on 26/Aug/20

Answered by aurpeyz last updated on 26/Aug/20

Can anyone pls explain this? it is pertaining  binomial expansion for negative powers

$${Can}\:{anyone}\:{pls}\:{explain}\:{this}?\:{it}\:{is}\:{pertaining} \\ $$$${binomial}\:{expansion}\:{for}\:{negative}\:{powers} \\ $$

Commented by mathdave last updated on 26/Aug/20

either for positive or negative degree power  always use this generalization formular  (x+y)^n =(x^n /(0!))+((nx^(n−1) y)/(1!))+((n(n−1)x^(n−2) y^2 )/(2!))+((n(n−1)(n−2)x^(n−3) y^3 )/(3!))..........

$${either}\:{for}\:{positive}\:{or}\:{negative}\:{degree}\:{power} \\ $$$${always}\:{use}\:{this}\:{generalization}\:{formular} \\ $$$$\left({x}+{y}\right)^{{n}} =\frac{{x}^{{n}} }{\mathrm{0}!}+\frac{{nx}^{{n}−\mathrm{1}} {y}}{\mathrm{1}!}+\frac{{n}\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{2}} {y}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right){x}^{{n}−\mathrm{3}} {y}^{\mathrm{3}} }{\mathrm{3}!}.......... \\ $$

Answered by Her_Majesty last updated on 26/Aug/20

Σ_(j=0) ^n x^j =((x^(n+1) −1)/(x−1))  lim_(n→∞) ((x^(n+1) −1)/(x−1)) only exists if ∣x∣<1  in this case x^(n+1) =0 ⇒ Σ_(j=0) ^∞ x^j =(1/(1−x)) with ∣x∣<1

$$\underset{{j}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{j}} =\frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}} \\ $$$${lim}_{{n}\rightarrow\infty} \frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}}\:{only}\:{exists}\:{if}\:\mid{x}\mid<\mathrm{1} \\ $$$${in}\:{this}\:{case}\:{x}^{{n}+\mathrm{1}} =\mathrm{0}\:\Rightarrow\:\underset{{j}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{j}} =\frac{\mathrm{1}}{\mathrm{1}−{x}}\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$

Answered by Rio Michael last updated on 26/Aug/20

Given the general binomial expansion (1 + x)^n , then general  term expressed as a summation is given as  (1 + x)^n  = Σ_(k =0) ^n ^n C_k  x^(n−k)   It is known that the series is convergent if ∣x∣ < 1.  If we wish to expand such that ∣x∣ > 1, then it  must be expanded in terms of (1/x) , this works since (1/x) < 1  and will be carried out for the expansion′s of  (1 + x)^(−n)  only.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{general}\:\mathrm{binomial}\:\mathrm{expansion}\:\left(\mathrm{1}\:+\:{x}\right)^{{n}} ,\:\mathrm{then}\:\mathrm{general} \\ $$$$\mathrm{term}\:\mathrm{expressed}\:\mathrm{as}\:\mathrm{a}\:\mathrm{summation}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as} \\ $$$$\left(\mathrm{1}\:+\:{x}\right)^{{n}} \:=\:\underset{{k}\:=\mathrm{0}} {\overset{{n}} {\sum}}\:^{{n}} {C}_{{k}} \:{x}^{{n}−{k}} \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\mathrm{the}\:\mathrm{series}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{if}\:\mid{x}\mid\:<\:\mathrm{1}. \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{wish}\:\mathrm{to}\:\mathrm{expand}\:\mathrm{such}\:\mathrm{that}\:\mid{x}\mid\:>\:\mathrm{1},\:\mathrm{then}\:\mathrm{it} \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{expanded}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\frac{\mathrm{1}}{{x}}\:,\:\mathrm{this}\:\mathrm{works}\:\mathrm{since}\:\frac{\mathrm{1}}{{x}}\:<\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{will}\:\mathrm{be}\:\mathrm{carried}\:\mathrm{out}\:\mathrm{for}\:\mathrm{the}\:\mathrm{expansion}'\mathrm{s}\:\mathrm{of}\:\:\left(\mathrm{1}\:+\:{x}\right)^{−{n}} \:\mathrm{only}. \\ $$

Commented by aurpeyz last updated on 26/Aug/20

pls. What is the implication of this statement?  Does that mean that i have to factorize  any question on negative power binomial to  get the form (1/x) in other to get the right ans

$${pls}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{implication}\:\mathrm{of}\:\mathrm{this}\:\mathrm{statement}? \\ $$$$\mathrm{Does}\:\mathrm{that}\:\mathrm{mean}\:\mathrm{that}\:\mathrm{i}\:\mathrm{have}\:\mathrm{to}\:\mathrm{factorize} \\ $$$$\mathrm{any}\:\mathrm{question}\:\mathrm{on}\:\mathrm{negative}\:\mathrm{power}\:\mathrm{binomial}\:\mathrm{to} \\ $$$$\mathrm{get}\:\mathrm{the}\:\mathrm{form}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{in}\:\mathrm{other}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{right}\:\mathrm{ans} \\ $$

Commented by aurpeyz last updated on 26/Aug/20

That is exactly where I am getting confused.  Anytime i have a negative power. I always  factorize the binomial to get the form (1/x) in   expansion. but the problem is that it doesnt work  for all kinds of problem

$$\mathrm{That}\:\mathrm{is}\:\mathrm{exactly}\:\mathrm{where}\:\mathrm{I}\:\mathrm{am}\:\mathrm{getting}\:\mathrm{confused}. \\ $$$$\mathrm{Anytime}\:\mathrm{i}\:\mathrm{have}\:\mathrm{a}\:\mathrm{negative}\:\mathrm{power}.\:\mathrm{I}\:\mathrm{always} \\ $$$$\mathrm{factorize}\:\mathrm{the}\:\mathrm{binomial}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{form}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{in}\: \\ $$$$\mathrm{expansion}.\:\mathrm{but}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{that}\:\mathrm{it}\:\mathrm{doesnt}\:\mathrm{work} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{kinds}\:\mathrm{of}\:\mathrm{problem} \\ $$

Commented by Rio Michael last updated on 26/Aug/20

 No its expansion as you would for anyother problem.  Most at times it will appear in terms of (1/x) , if it doesn′t  then either the series doesn′t converge or it′s got a particular  range of numbers for which it converges.

$$\:\mathrm{No}\:\mathrm{its}\:\mathrm{expansion}\:\mathrm{as}\:\mathrm{you}\:\mathrm{would}\:\mathrm{for}\:\mathrm{anyother}\:\mathrm{problem}. \\ $$$$\mathrm{Most}\:\mathrm{at}\:\mathrm{times}\:\mathrm{it}\:\mathrm{will}\:\mathrm{appear}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\frac{\mathrm{1}}{{x}}\:,\:\mathrm{if}\:\mathrm{it}\:\mathrm{doesn}'\mathrm{t} \\ $$$$\mathrm{then}\:\mathrm{either}\:\mathrm{the}\:\mathrm{series}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{converge}\:\mathrm{or}\:\mathrm{it}'\mathrm{s}\:\mathrm{got}\:\mathrm{a}\:\mathrm{particular} \\ $$$$\mathrm{range}\:\mathrm{of}\:\mathrm{numbers}\:\mathrm{for}\:\mathrm{which}\:\mathrm{it}\:\mathrm{converges}. \\ $$

Commented by aurpeyz last updated on 27/Aug/20

Sir. Pls check question Q.110109 help me with the expansion

$${Sir}.\:{Pls}\:{check}\:{question}\:{Q}.\mathrm{110109}\:{help}\:{me}\:{with}\:{the}\:{expansion} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com