Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109909 by mathdave last updated on 26/Aug/20

Commented by mnjuly1970 last updated on 26/Aug/20

nice problem but a little bit  difficult. ★

niceproblembutalittlebitdifficult.

Commented by mathdave last updated on 26/Aug/20

it very simple problem

itverysimpleproblem

Commented by mohammad17 last updated on 26/Aug/20

sir i want the solution this problem

siriwantthesolutionthisproblem

Commented by mathmax by abdo last updated on 26/Aug/20

if you have seen the answer in a  book...

ifyouhaveseentheanswerinabook...

Commented by mathdave last updated on 26/Aug/20

what did you really meant by that statement

whatdidyoureallymeantbythatstatement

Commented by mathmax by abdo last updated on 26/Aug/20

i mean that the question is not simple...!

imeanthatthequestionisnotsimple...!

Answered by mnjuly1970 last updated on 26/Aug/20

Answered by mathmax by abdo last updated on 26/Aug/20

I =∫_0 ^π  cos(tanx−(1/(tanx)))dx  ⇒  I =∫_0 ^(π/2)  cos(tanx−(1/(tanx)))dx +∫_(π/2) ^π  cos(tanx −(1/(tanx)))dx but  ∫_(π/2) ^π  cos(tanx−(1/(tanx)))dx =_(x=(π/2)+t)   ∫_0 ^(π/2)  cos(−(1/(tant))+tant) dt  =∫_0 ^(π/2)  cos(tant−(1/(tant)))dt ⇒I =2 ∫_0 ^(π/2)  cos(tanx−(1/(tanx)))dx  =_(tanx =u)    2∫_0 ^∞  cos(u−(1/u))(du/(1+u^2 ))  =2 ∫_0 ^∞  ((cos(u−(1/u)))/(u^2  +1)) du =∫_(−∞) ^(+∞)  ((cos(u−(1/u)))/(u^2  +1))du =Re(∫_(−∞) ^(+∞)  (e^(i(u−(1/u))) /(u^2  +1))du)  let ϕ(z) =(e^(i(z−(1/z))) /(z^2  +1)) ⇒∫_(−∞) ^(+∞)  ϕ−z)dz =2iπ Res(ϕ,i)  =2iπ×(e^(i(i−(1/i))) /(2i)) =π e^(−1−1 ) =π e^(−2)  ⇒ ★∫_0 ^π  cos(tanx−cotanx)dx=(π/e^2 ) ★

I=0πcos(tanx1tanx)dxI=0π2cos(tanx1tanx)dx+π2πcos(tanx1tanx)dxbutπ2πcos(tanx1tanx)dx=x=π2+t0π2cos(1tant+tant)dt=0π2cos(tant1tant)dtI=20π2cos(tanx1tanx)dx=tanx=u20cos(u1u)du1+u2=20cos(u1u)u2+1du=+cos(u1u)u2+1du=Re(+ei(u1u)u2+1du)letφ(z)=ei(z1z)z2+1+φz)dz=2iπRes(φ,i)=2iπ×ei(i1i)2i=πe11=πe20πcos(tanxcotanx)dx=πe2

Commented by mathmax by abdo last updated on 26/Aug/20

the Q here is calculate  ∫_0 ^π  cos(tanx−cotanx)dx

theQhereiscalculate0πcos(tanxcotanx)dx

Commented by mnjuly1970 last updated on 26/Aug/20

very excellent...

veryexcellent...

Commented by mathmax by abdo last updated on 26/Aug/20

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com