Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109912 by mohammad17 last updated on 26/Aug/20

(1)∫∣((x+3)/(x+1))∣dx    (2)∫x∣x−1∣dx    (3)∫e^((x−1)/x) dx

$$\left(\mathrm{1}\right)\int\mid\frac{{x}+\mathrm{3}}{{x}+\mathrm{1}}\mid{dx} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\int{x}\mid{x}−\mathrm{1}\mid{dx} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\int{e}^{\frac{{x}−\mathrm{1}}{{x}}} {dx} \\ $$

Commented by mohammad17 last updated on 26/Aug/20

  ho is can help me

$$ \\ $$$${ho}\:{is}\:{can}\:{help}\:{me} \\ $$

Answered by mathmax by abdo last updated on 26/Aug/20

3) I=∫ e^((x−1)/x) dx    at form of serie  I =∫  e^(1−(1/x))  dx =e ∫  e^(−(1/x))  dx =e∫ Σ_(n=0) ^∞   (((−(1/x))^n )/(n!)) =e Σ_(n=0) ^∞ ∫   (((−1)^n )/(n! x^n ))dx  =e Σ_(n=0) ^∞  (((−1)^n )/(n!)) ∫  x^(−n)  dx  =e Σ_(n=0) ^∞  (((−1)^n )/(n!(1−n)x^(n−1) )) +C  =e Σ_(n=0) ^∞  (((−1)^(n+1) )/((n−1)(n!)x^(n−1) )) +C

$$\left.\mathrm{3}\right)\:\mathrm{I}=\int\:\mathrm{e}^{\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}} \mathrm{dx}\:\:\:\:\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie} \\ $$$$\mathrm{I}\:=\int\:\:\mathrm{e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}} \:\mathrm{dx}\:=\mathrm{e}\:\int\:\:\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}}} \:\mathrm{dx}\:=\mathrm{e}\int\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{n}} }{\mathrm{n}!}\:=\mathrm{e}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \int\:\:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}!\:\mathrm{x}^{\mathrm{n}} }\mathrm{dx} \\ $$$$=\mathrm{e}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}!}\:\int\:\:\mathrm{x}^{−\mathrm{n}} \:\mathrm{dx}\:\:=\mathrm{e}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}!\left(\mathrm{1}−\mathrm{n}\right)\mathrm{x}^{\mathrm{n}−\mathrm{1}} }\:+\mathrm{C} \\ $$$$=\mathrm{e}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}!\right)\mathrm{x}^{\mathrm{n}−\mathrm{1}} }\:+\mathrm{C} \\ $$$$ \\ $$

Commented by mohammad17 last updated on 26/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 26/Aug/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Answered by mathmax by abdo last updated on 26/Aug/20

2) let I =∫ x∣x−1∣ dx ⇒ I =∫x(√((x−1)^2 ))dx  changement  (x−1)^2  =u  give x−1 =δ(√u)  with  δ =1 if x>1 and δ=−1 ifx<1  ⇒ I  =∫  (1+δ(√u))(√u)((δdu)/(2(√u)))  =(1/2)∫ (1+δ(√u))δdu  =(δ/2) u  +(δ^2 /2)∫ (du/(√u)) =((δu)/2) +(√u)  +C =((δ(x−1)^2 )/2) +∣x−1∣ +C

$$\left.\mathrm{2}\right)\:\mathrm{let}\:\mathrm{I}\:=\int\:\mathrm{x}\mid\mathrm{x}−\mathrm{1}\mid\:\mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int\mathrm{x}\sqrt{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{changement} \\ $$$$\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} \:=\mathrm{u}\:\:\mathrm{give}\:\mathrm{x}−\mathrm{1}\:=\delta\sqrt{\mathrm{u}}\:\:\mathrm{with}\:\:\delta\:=\mathrm{1}\:\mathrm{if}\:\mathrm{x}>\mathrm{1}\:\mathrm{and}\:\delta=−\mathrm{1}\:\mathrm{ifx}<\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{I}\:\:=\int\:\:\left(\mathrm{1}+\delta\sqrt{\mathrm{u}}\right)\sqrt{\mathrm{u}}\frac{\delta\mathrm{du}}{\mathrm{2}\sqrt{\mathrm{u}}}\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\:\left(\mathrm{1}+\delta\sqrt{\mathrm{u}}\right)\delta\mathrm{du} \\ $$$$=\frac{\delta}{\mathrm{2}}\:\mathrm{u}\:\:+\frac{\delta^{\mathrm{2}} }{\mathrm{2}}\int\:\frac{\mathrm{du}}{\sqrt{\mathrm{u}}}\:=\frac{\delta\mathrm{u}}{\mathrm{2}}\:+\sqrt{\mathrm{u}}\:\:+\mathrm{C}\:=\frac{\delta\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}\:+\mid\mathrm{x}−\mathrm{1}\mid\:+\mathrm{C} \\ $$

Commented by mohammad17 last updated on 26/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com