All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 109948 by mnjuly1970 last updated on 26/Aug/20
Answered by 1549442205PVT last updated on 26/Aug/20
acosA=a.b2+c2−a22bc=a2(b2+c2−a2)2abc.Similarly,wehavetheotherequalitiesforb,cHenceacosA+bcosB+c.cosC=Σcyca2(b2+c2−a2)2abc=a2b2+b2c2+c2a2−0.5(a4+b4+c4)abc(∗)a,b,carerootsoftheequationx3−24x2+180x−420byViete′stheoremwehave{a+b+c=24ab+bc+ca=180abc=420a2+b2+c2=(a+b+c)2−2(ab+bc+ca)=242−2.180=576−360=216(a2b2+b2c2+c2a2)=(ab+bc+ca)2−2abc(a+b+c)=1802−2.420.24=32400−20160=12240(1)(a4+b4+c4)=(a2+b2+c2)2−2(a2b2+b2c2+c2a2)=2162−2.12240=22176(2)Replace(1)(2)andabc=420into(∗)wegeta2b2+b2c2+c2a2−(a4+b4+c4)abc=12240−0.5×22176420=9635Thus,acosA+bcosB+c.cosC=9635
Commented by mnjuly1970 last updated on 27/Aug/20
excellent...thankyousir..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com