Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109989 by 150505R last updated on 26/Aug/20

Commented by 150505R last updated on 26/Aug/20

please solve

$${please}\:{solve} \\ $$

Answered by maths mind last updated on 30/Aug/20

∫_b ^a f(x)dx=∫_a ^b f(a+b−x)dx  ⇒∫_0 ^1 ((tg^− ((x/(x+1))))/(tg^− (((1−2x^2 +2x)/2))))dx=∫_0 ^1 ((tg^− (((1−x)/(2−x))))/(tg^− (((1−2(1−x)^2 +2(1−x))/2))))dx  =∫_0 ^1 ((tg^− (((1−x)/(2−x)))dx)/(tg^− (((1−2x^2 +2x)/2))))dx⇒  2∫_0 ^1 ((tg^− ((x/(x+1)))dx)/(tg^− (((1−2x^2 +2x)/2))))=2A=∫_0 ^1 ((tg^− ((x/(x+1)))+tg^− (((1−x)/(2−x))))/(tg^− (((1−2x^2 +2x)/2))))dx  tg^− (a)+tg^− (b)=tg^− (((a+b)/(1−ab)))  ⇒tg^− ((x/(x+1)))+tg^− (((1−x)/(2−x)))=tg^− ((((x/(x+1))+((1−x)/(2−x)))/(1−(x/(x+1)).((1−x)/(2−x)))))  =((tg^− (((−2x^2 +2x+1)/((x+1)(2−x))).(((x+1)(2−x))/2)))/(tg^− (((1−2x^2 +2x)/2))))  ⇔2A=∫_0 ^1 ((tg^− (((1−2x^2 +2x)/2)))/(tg^− (((1−2x^2 +2x)/2))))dx=∫_0 ^1 dx=1  ⇒A=(1/2)

$$\int_{{b}} ^{{a}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+{b}−{x}\right){dx} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tg}^{−} \left(\frac{{x}}{{x}+\mathrm{1}}\right)}{{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}}{\mathrm{2}}\right)}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tg}^{−} \left(\frac{\mathrm{1}−{x}}{\mathrm{2}−{x}}\right)}{{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2}\left(\mathrm{1}−{x}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}−{x}\right)}{\mathrm{2}}\right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tg}^{−} \left(\frac{\mathrm{1}−{x}}{\mathrm{2}−{x}}\right){dx}}{{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}}{\mathrm{2}}\right)}{dx}\Rightarrow \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tg}^{−} \left(\frac{{x}}{{x}+\mathrm{1}}\right)\mathrm{dx}}{\mathrm{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}}{\mathrm{2}}\right)}=\mathrm{2}{A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tg}^{−} \left(\frac{{x}}{{x}+\mathrm{1}}\right)+{tg}^{−} \left(\frac{\mathrm{1}−{x}}{\mathrm{2}−{x}}\right)}{{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}}{\mathrm{2}}\right)}{dx} \\ $$$${tg}^{−} \left({a}\right)+{tg}^{−} \left({b}\right)={tg}^{−} \left(\frac{{a}+{b}}{\mathrm{1}−{ab}}\right) \\ $$$$\Rightarrow{tg}^{−} \left(\frac{{x}}{{x}+\mathrm{1}}\right)+{tg}^{−} \left(\frac{\mathrm{1}−{x}}{\mathrm{2}−{x}}\right)={tg}^{−} \left(\frac{\frac{{x}}{{x}+\mathrm{1}}+\frac{\mathrm{1}−{x}}{\mathrm{2}−{x}}}{\mathrm{1}−\frac{{x}}{{x}+\mathrm{1}}.\frac{\mathrm{1}−{x}}{\mathrm{2}−{x}}}\right) \\ $$$$=\frac{{tg}^{−} \left(\frac{−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}{\left({x}+\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}.\frac{\left({x}+\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}{\mathrm{2}}\right)}{{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}}{\mathrm{2}}\right)} \\ $$$$\Leftrightarrow\mathrm{2}{A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}}{\mathrm{2}}\right)}{{tg}^{−} \left(\frac{\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}}{\mathrm{2}}\right)}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {dx}=\mathrm{1} \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com