Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110175 by mathdave last updated on 27/Aug/20

solve the integral  ∫_(−∞) ^(+∞) ((sinx)/(x)^(1/3) )dx

$${solve}\:{the}\:{integral} \\ $$$$\int_{−\infty} ^{+\infty} \frac{\mathrm{sin}{x}}{\sqrt[{\mathrm{3}}]{{x}}}{dx} \\ $$

Answered by mathmax by abdo last updated on 28/Aug/20

I =∫_(−∞) ^(+∞)  ((sinx)/x^(1/3) )dx =2 ∫_0 ^∞ ((sinx)/x^(1/3) )dx =−2 Im(∫_0 ^∞   x^(−(1/3))  e^(−ix) dx)  changement  ix =t give −x =it ⇒x =−it ⇒  ∫_0 ^∞  x^(−(1/3))  e^(−ix) dx =∫_0 ^∞ (−it)^(−(1/3))  e^(−t)  (−i)dt  =(−i)^(−(1/3)+1) ∫_0 ^∞  t^(−(1/(3 )))  e^(−t)  dt  =(e^(−((iπ)/2)) )^(2/3)  ∫_0 ^∞  t^((2/3)−1) e^(−t)  dt  =e^(−((iπ)/3))  Γ((2/3)) =Γ((2/3)).(cos((π/3))−isin((π/3))) ⇒  I =2(Γ((2/3)) sin((π/3)) =(√3)×Γ((2/3))

$$\mathrm{I}\:=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{sinx}}{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }\mathrm{dx}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sinx}}{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }\mathrm{dx}\:=−\mathrm{2}\:\mathrm{Im}\left(\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{e}^{−\mathrm{ix}} \mathrm{dx}\right) \\ $$$$\mathrm{changement}\:\:\mathrm{ix}\:=\mathrm{t}\:\mathrm{give}\:−\mathrm{x}\:=\mathrm{it}\:\Rightarrow\mathrm{x}\:=−\mathrm{it}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{e}^{−\mathrm{ix}} \mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \left(−\mathrm{it}\right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{e}^{−\mathrm{t}} \:\left(−\mathrm{i}\right)\mathrm{dt} \\ $$$$=\left(−\mathrm{i}\right)^{−\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{−\frac{\mathrm{1}}{\mathrm{3}\:}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:\:=\left(\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{2}}} \right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \:\mathrm{dt} \\ $$$$=\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:=\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right).\left(\mathrm{cos}\left(\frac{\pi}{\mathrm{3}}\right)−\mathrm{isin}\left(\frac{\pi}{\mathrm{3}}\right)\right)\:\Rightarrow \\ $$$$\mathrm{I}\:=\mathrm{2}\left(\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}\right)\:=\sqrt{\mathrm{3}}×\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)\right. \\ $$

Answered by mathdave last updated on 28/Aug/20

solution  let I=∫_(−∞) ^(+∞) ((sinx)/(x)^(1/3) )dx=2∫_0 ^∞ ((sinx)/x^(1/3) )dx  from maz identity integral  ∫_0 ^∞ ((sin(ax))/x^n )dx=((πa^(n−1) )/(2Γ(n)sin(((nπ)/2))))  taking a=1  and  n=(1/3)  ∵I=2∫_0 ^∞ ((sin)/x^(1/3) )dx=2•((π×1^((1/3)−1) )/(2Γ((1/3))sin((π/6))))=(π/((1/2)Γ((1/3))))  ∵∫_(−∞) ^(+∞) ((sinx)/(x)^(1/3) )dx=((2π)/(Γ((1/3))))=2.3454  by mathdave(28/08/2020)

$${solution} \\ $$$${let}\:{I}=\int_{−\infty} ^{+\infty} \frac{\mathrm{sin}{x}}{\sqrt[{\mathrm{3}}]{{x}}}{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{x}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dx} \\ $$$${from}\:{maz}\:{identity}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\left({ax}\right)}{{x}^{{n}} }{dx}=\frac{\pi{a}^{{n}−\mathrm{1}} }{\mathrm{2}\Gamma\left({n}\right)\mathrm{sin}\left(\frac{{n}\pi}{\mathrm{2}}\right)} \\ $$$${taking}\:{a}=\mathrm{1}\:\:{and}\:\:{n}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\because{I}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dx}=\mathrm{2}\bullet\frac{\pi×\mathrm{1}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} }{\mathrm{2}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{6}}\right)}=\frac{\pi}{\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$$$\because\int_{−\infty} ^{+\infty} \frac{\mathrm{sin}{x}}{\sqrt[{\mathrm{3}}]{{x}}}{dx}=\frac{\mathrm{2}\pi}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}=\mathrm{2}.\mathrm{3454} \\ $$$${by}\:{mathdave}\left(\mathrm{28}/\mathrm{08}/\mathrm{2020}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com