Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 110182 by udaythool last updated on 27/Aug/20

Solve x^3 +15x−92=0

Solvex3+15x92=0

Commented by mr W last updated on 27/Aug/20

let x=u+v  (u+v)^3 +15(u+v)−92=0  u^3 +v^3 +3(uv+5)(u+v)−92=0  let uv+5=0 ⇒uv=−5 ⇒u^3 v^3 =−125  ⇒u^3 +v^3 −92=0 ⇒u^3 +v^3 =92  u^3  and v^3  are roots of z^2 −92z−125=0  ⇒z=46±(√(46^2 +125))=46±3(√(249))  ⇒u=((46+3(√(249))))^(1/3)   ⇒v=((46−3(√(249))))^(1/3)   ⇒x=((46+3(√(249))))^(1/3) +((46−3(√(249))))^(1/3) ≈3.4339

letx=u+v(u+v)3+15(u+v)92=0u3+v3+3(uv+5)(u+v)92=0letuv+5=0uv=5u3v3=125u3+v392=0u3+v3=92u3andv3arerootsofz292z125=0z=46±462+125=46±3249u=46+32493v=4632493x=46+32493+46324933.4339

Commented by udaythool last updated on 28/Aug/20

��THANKS��

Answered by 1549442205PVT last updated on 28/Aug/20

Put x=(√5)y⇒5(√5)y^3 +15(√5)y−92=0  ⇔y^3 +3y−((92)/(5(√5)))=0 (1)  Put y=z−(1/z)⇒y^3 =z^3 −(1/z^3 )−3(z−(1/z))  Replace into (1)we get  z^3 −(1/z^3 )−((92(√5))/(25))=0⇔z^6 −((92(√5))/(25))z^3 −1=0  This is quadratic equation w.r.t “z^3 ”  Δ=(((92(√5))/(25)))^2 +4=((8464)/(125))+4=((8964)/(125))  ⇒z^3 =((((92(√5))/(25))±((6(√(1245)))/(25)))/2)=((92(√5)±6(√(1245 )))/(50))  i)For z^3 =((92(√5)+6(√(1245 )))/(50)).  Since (a−b)(a+b)=a^2 −b^2 ,we have  ((92(√5)+6(√(1245 )))/(50))×((92(√5)−6(√(1245 )))/(50))=−1(∗)  Hence,.By Vieta′s theorem we get  z=^3 (√((92(√5)+6(√(1245 )))/(50))),−(1/z)=^3 (√((92(√5)−6(√(1245 )))/(50)))  ⇒x=(√5)y=(√5)(z−(1/z))=  (√5)(^3 (√((92(√5)+6(√(1245 )))/(50)))+^3 (√((92(√5)−6(√(1245 )))/(50))))  =^3 (√((2300+150(√(249 )))/(50)))+^3 (√((2300−150(√(249 )))/(50)))  ==^3 (√(46+3(√(249))))+^3 (√(46−3(√(249))))  ii)For z^3 =^3 (√((92(√5)−6(√(1245 )))/(50))).From(∗)  we infer z−(1/z) is the same value  Thus,given equation x^3 +15x−92=0  has unique root  x=^3 (√(46+3(√(249))))+^3 (√(46−3(√(249))))

Putx=5y55y3+155y92=0y3+3y9255=0(1)Puty=z1zy3=z31z33(z1z)Replaceinto(1)wegetz31z392525=0z692525z31=0Prime causes double exponent: use braces to clarifyΔ=(92525)2+4=8464125+4=8964125z3=92525±61245252=925±6124550i)Forz3=925+6124550.Since(ab)(a+b)=a2b2,wehave925+6124550×9256124550=1()Hence,.ByVietastheoremwegetz=3925+6124550,1z=39256124550x=5y=5(z1z)=5(3925+6124550+39256124550)=32300+15024950+3230015024950==346+3249+3463249ii)Forz3=39256124550.From()weinferz1zisthesamevalueThus,givenequationx3+15x92=0hasuniquerootx=346+3249+3463249

Commented by udaythool last updated on 28/Aug/20

Really I enjoyed this approach. Thanks �� ����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com