Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110222 by mathdave last updated on 28/Aug/20

find the series  Σ_(n=2) ^∞ (−1)^n [(1/(3n+1))+(1/(3n−2))]

findtheseriesn=2(1)n[13n+1+13n2]

Answered by mnjuly1970 last updated on 27/Aug/20

find the series  Σ_(n=2) ^∞ (−1)^n [(1/(3n+1))+(1/(3n+2))]

findtheseriesn=2(1)n[13n+1+13n+2]

Answered by mathmax by abdo last updated on 28/Aug/20

S =Σ_(n=2) ^∞  (((−1)^n )/(3n+1)) +Σ_(n=2) ^∞  (((−1)^n )/(3n−2)) =A +B  A =Σ_(n=0) ^(∞ )  (((−1)^n )/(3n+1)) −(1−(1/4)) =−(3/4)+Σ_(n=0) ^∞  (((−1)^n )/(3n+1))  let ϕ(x) =Σ_(n=0) ^∞  (−1)^n  (x^(3n+1) /(3n+1))  (∣x∣≤1)  ϕ^′ (x) =Σ_(n=0) ^∞ (−1)^n  x^(3n)  =(1/(1+x^3 )) ⇒ϕ(x) =∫_0 ^x  (dx/(1+x^3 )) +c  (c=ϕ(0)=0)  F(x) =(1/((x+1)(x^2 −x+1))) =(a/(x+1)) +((bx +c)/(x^2 −x+1))  a=(1/3)  ,lim_(x→+∞) xF(x) =0 =a+b ⇒b=−(1/3)  F(0) =1 =a +c ⇒c=1−(1/3) =(2/3) ⇒F(x)=(1/(3(x+1)))+((−(1/3)x+(2/3))/(x^2 −x+1))  A =∫_0 ^1  (dx/(x^3 +1)) =(1/3)[ln∣x+1∣]_0 ^1 −(1/6)∫_0 ^1   ((2x−1−1)/(x^2 −x+1))dx +(2/3)∫_0 ^1  (dx/(x^2 −x+1))  =((ln2)/3) −(1/6)[ln(x^2 −x+1)]_0 ^1    +(5/6) ∫_0 ^1  (dx/(x^2 −x+1))  we have  ∫_0 ^1  (dx/(x^2 −x+1)) =∫_0 ^1  (dx/((x−(1/2))^2  +(3/4))) =_(x−(1/2)=((√3)/2)t) (4/3)   ∫_(−(1/(√3))) ^(1/(√3))      (1/(u^2  +1))((√3)/2)dt  =(2/(√3))[arctanu]_(−(1/(√3))) ^(1/(√3))    =(2/(√3)){((2π)/6)} =((2π)/(3(√3))) ⇒ A =((ln2)/3)+(5/6).((2π)/(3(√3)))−(3/4)  ⇒A =((ln(2))/3) +((5π)/(9(√3)))−(3/4)  B =Σ_(n=2) ^∞  (((−1)^n )/(3n−2)) =_(n=p+1)    Σ_(p=1) ^∞  (((−1)^(p+1) )/(3p+1))  =−Σ_(n=1) ^∞  (((−1)^n )/(3n+1)) =−(Σ_(n=0) ^∞  (((−1)^n )/(3n+1))−1)=1−Σ_(n=0) ^∞  (((−1)^n )/(3n+1))  =1−(((ln(2))/3)+((5π)/(9(√3)))) ⇒  S =A +B =((ln(2))/3)+((5π)/(9(√3)))−(3/4) +1−((ln2)/3)−((5π)/(9(√3)))  ⇒ S =(1/4)

S=n=2(1)n3n+1+n=2(1)n3n2=A+BA=n=0(1)n3n+1(114)=34+n=0(1)n3n+1letφ(x)=n=0(1)nx3n+13n+1(x∣⩽1)φ(x)=n=0(1)nx3n=11+x3φ(x)=0xdx1+x3+c(c=φ(0)=0)F(x)=1(x+1)(x2x+1)=ax+1+bx+cx2x+1a=13,limx+xF(x)=0=a+bb=13F(0)=1=a+cc=113=23F(x)=13(x+1)+13x+23x2x+1A=01dxx3+1=13[lnx+1]0116012x11x2x+1dx+2301dxx2x+1=ln2316[ln(x2x+1)]01+5601dxx2x+1wehave01dxx2x+1=01dx(x12)2+34=x12=32t4313131u2+132dt=23[arctanu]1313=23{2π6}=2π33A=ln23+56.2π3334A=ln(2)3+5π9334B=n=2(1)n3n2=n=p+1p=1(1)p+13p+1=n=1(1)n3n+1=(n=0(1)n3n+11)=1n=0(1)n3n+1=1(ln(2)3+5π93)S=A+B=ln(2)3+5π9334+1ln235π93S=14

Commented by mathdave last updated on 28/Aug/20

good work

goodwork

Answered by mnjuly1970 last updated on 28/Aug/20

Commented by mathdave last updated on 28/Aug/20

keep the spirit up

keepthespiritup

Terms of Service

Privacy Policy

Contact: info@tinkutara.com