All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 110285 by mathdave last updated on 28/Aug/20
Answered by 1549442205PVT last updated on 29/Aug/20
wehavex8+4=(x4+2)2−2x4=(x4+2x2+2)(x4−2x2+2)8x5−16xx8+4=ax3+bx2+cx+dx4−2x2+2+a1x3+b1x2+c1x+d1x4+2x2+2=ax7+bx6+(c+a2)x5+(b2+d)x4+(2a+c2)x3+(2b+d2)x2+2cx+2dx8+4+a1x7+b1x6+(c1−a12)x5(−b12+d1)x4+(2a1−c12x3+(2b1−d12)x2+2c1x+2d1x8+4⇔{(a+a1)=0(1)(b+b1)=0(2)(a−a1)2+c+c1=8(3)(b−b1)2+d+d1=0(4)2(a+a1)+(c−c1)2=0(5)(d−d1)2+2(b+b1)=0(6)2(c+c1)=−16(7)d+d1=0(8)(5)(1)⇒c=c1;(1)(3)(7)⇔a=42,a1=−42(1)(5)(6)⇒c=c1=−4,(2)(6)(8)⇒d=d1=0Therefore8x5−16xx8+4=42x3−4x4−2x2+2+−42x3−4x4+2x2+2∫8x5−16xx8+4dx=2∫4x3−22x4−2x2+2dx−2∫4x3+22x4+2x2+2dx+=2∫dx4−2x2+2)x4−2x2+2−2∫d(x4−2x2+2)x4−2x2+2dx=2ln∣x4−2x2+2∣−2ln∣x4+2x2+2∣=2ln∣x4−2x2+2x4−2x2+2∣
Terms of Service
Privacy Policy
Contact: info@tinkutara.com