Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110287 by mathdave last updated on 28/Aug/20

Commented by bemath last updated on 28/Aug/20

sin^(−1) (5)=(π/2)−cos^(−1) (5)  sin (sin^(−1) (5))=sin ((π/2)−cos^(−1) (5))  ⇒ 5 = cos (cos^(−1) (5))  ⇒ 5 = 5 ( true)

$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{5}\right)=\frac{\pi}{\mathrm{2}}−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{5}\right) \\ $$$$\mathrm{sin}\:\left(\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{5}\right)\right)=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{5}\right)\right) \\ $$$$\Rightarrow\:\mathrm{5}\:=\:\mathrm{cos}\:\left(\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{5}\right)\right) \\ $$$$\Rightarrow\:\mathrm{5}\:=\:\mathrm{5}\:\left(\:{true}\right) \\ $$

Commented by udaythool last updated on 28/Aug/20

its straight forward...  assume lhs as θ then take sin of  both sides, use trigonometric  relation; sin(A+B) and sin  (cos^(−1) x)=(√(1−x^2 )) we get  25+(√(−24))(√(−24))=1=sinθ⇒θ=(π/2)

$$\mathrm{its}\:\mathrm{straight}\:\mathrm{forward}... \\ $$$$\mathrm{assume}\:\mathrm{lhs}\:\mathrm{as}\:\theta\:\mathrm{then}\:\mathrm{take}\:\mathrm{sin}\:\mathrm{of} \\ $$$$\mathrm{both}\:\mathrm{sides},\:\mathrm{use}\:\mathrm{trigonometric} \\ $$$$\mathrm{relation};\:\mathrm{sin}\left({A}+{B}\right)\:\mathrm{and}\:\mathrm{sin} \\ $$$$\left(\mathrm{cos}^{−\mathrm{1}} {x}\right)=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{25}+\sqrt{−\mathrm{24}}\sqrt{−\mathrm{24}}=\mathrm{1}=\mathrm{sin}\theta\Rightarrow\theta=\frac{\pi}{\mathrm{2}} \\ $$

Answered by $@y@m last updated on 28/Aug/20

Let sin^(−1) 5=θ  sin θ=5  ⇒ cos ((π/2)−θ)=5  ⇒cos^(−1) 5=(π/2)−θ  ⇒θ+cos^(−1) 5=(π/2)  ⇒sin^(−1) 5+cos^(−1) 5=(π/2)

$${Let}\:\mathrm{sin}^{−\mathrm{1}} \mathrm{5}=\theta \\ $$$$\mathrm{sin}\:\theta=\mathrm{5} \\ $$$$\Rightarrow\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right)=\mathrm{5} \\ $$$$\Rightarrow\mathrm{cos}^{−\mathrm{1}} \mathrm{5}=\frac{\pi}{\mathrm{2}}−\theta \\ $$$$\Rightarrow\theta+\mathrm{cos}^{−\mathrm{1}} \mathrm{5}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}^{−\mathrm{1}} \mathrm{5}+\mathrm{cos}^{−\mathrm{1}} \mathrm{5}=\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$

Commented by $@y@m last updated on 28/Aug/20

It is literally correct but theoretically  wrong as sin θ≠5 for any θ

$${It}\:{is}\:{literally}\:{correct}\:{but}\:{theoretically} \\ $$$${wrong}\:{as}\:\mathrm{sin}\:\theta\neq\mathrm{5}\:{for}\:{any}\:\theta \\ $$

Answered by Her_Majesty last updated on 28/Aug/20

sin^(−1) z+cos^(−1) z=π/2∀z∈C

$${sin}^{−\mathrm{1}} {z}+{cos}^{−\mathrm{1}} {z}=\pi/\mathrm{2}\forall{z}\in\mathbb{C} \\ $$

Commented by $@y@m last updated on 28/Aug/20

Commented by Her_Majesty last updated on 28/Aug/20

domains are only relevant within R  remember the domain of (√x) is R^+  but the  next step is to define i:=(√(−1)) and now the  domain is R (x>0 ⇒ (√(−x))=i(√x))  similar for sin^(−1) , cos^(−1) ...

$${domains}\:{are}\:{only}\:{relevant}\:{within}\:\mathbb{R} \\ $$$${remember}\:{the}\:{domain}\:{of}\:\sqrt{{x}}\:{is}\:\mathbb{R}^{+} \:{but}\:{the} \\ $$$${next}\:{step}\:{is}\:{to}\:{define}\:{i}:=\sqrt{−\mathrm{1}}\:{and}\:{now}\:{the} \\ $$$${domain}\:{is}\:\mathbb{R}\:\left({x}>\mathrm{0}\:\Rightarrow\:\sqrt{−{x}}={i}\sqrt{{x}}\right) \\ $$$${similar}\:{for}\:{sin}^{−\mathrm{1}} ,\:{cos}^{−\mathrm{1}} ... \\ $$

Commented by $@y@m last updated on 29/Aug/20

Can you give me an example (i.e.  value of θ) for which sin^(−1) 5=θ ?

$${Can}\:{you}\:{give}\:{me}\:{an}\:{example}\:\left({i}.{e}.\right. \\ $$$$\left.{value}\:{of}\:\theta\right)\:{for}\:{which}\:\mathrm{sin}^{−\mathrm{1}} \mathrm{5}=\theta\:? \\ $$

Commented by Her_Majesty last updated on 29/Aug/20

x=siny ⇔ y=sin^(−1) x  siny=x=((e^(iy) −e^(−iy) )/(2i))  2ix=e^(iy) −e^(−iy)   t=e^(iy)  ⇔ y=−ilnt  2ix=t+1/t  t^2 −2ixt−1=0  t=ix±(√((ix)^2 +1))=ix±i(√(x^2 −1))=i(x±(√(x^2 −1)))  y=−ilnt=−iln(i(x±(√(x^2 −1))))=  =−i(lni+ln(x±(√(x^2 −1))))=  =(π/2)−iln(x±(√(x^2 −1)))  ⇒  sin^(−1) x=(π/2)−iln(x±(√(x^2 −1)))

$${x}={siny}\:\Leftrightarrow\:{y}={sin}^{−\mathrm{1}} {x} \\ $$$${siny}={x}=\frac{{e}^{{iy}} −{e}^{−{iy}} }{\mathrm{2}{i}} \\ $$$$\mathrm{2}{ix}={e}^{{iy}} −{e}^{−{iy}} \\ $$$${t}={e}^{{iy}} \:\Leftrightarrow\:{y}=−{ilnt} \\ $$$$\mathrm{2}{ix}={t}+\mathrm{1}/{t} \\ $$$${t}^{\mathrm{2}} −\mathrm{2}{ixt}−\mathrm{1}=\mathrm{0} \\ $$$${t}={ix}\pm\sqrt{\left({ix}\right)^{\mathrm{2}} +\mathrm{1}}={ix}\pm{i}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}={i}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$${y}=−{ilnt}=−{iln}\left({i}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\right)= \\ $$$$=−{i}\left({lni}+{ln}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\right)= \\ $$$$=\frac{\pi}{\mathrm{2}}−{iln}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$$\Rightarrow \\ $$$${sin}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{2}}−{iln}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$

Commented by Her_Majesty last updated on 29/Aug/20

similar we get  cos^(−1) x=−iln(x±(√(x^2 −1)))

$${similar}\:{we}\:{get} \\ $$$${cos}^{−\mathrm{1}} {x}=−{iln}\left({x}\pm\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$

Answered by 1549442205PVT last updated on 29/Aug/20

Put ϕ=sin^(−1) 5,cos^(−1) 5=θ we have  sinϕ=5,cosθ=5⇒sinϕ=cosθ  ⇔sinϕ=sin((π/2)−θ)⇒ϕ=(π/2)−θ+2kπ  ⇔ϕ+θ=(π/2)+2kπ  But bythe definition of the function  sin^(−1) (x) , cos^(−1) (x)we have ((−π)/2)≤ϕ≤(π/2),  and 0≤θ≤π Hence ((−π)/2)≤ϕ+θ≤((3π)/2),so  −(π/2)≤ϕ+θ=(π/2)+2kπ≤((3π)/2)⇒k=0  ⇒𝛟+𝛉=(𝛑/2)⇒sin^(−1) 5+cos^(−1) 5=(𝛑/2)(Q.E.D)

$$\mathrm{Put}\:\varphi=\mathrm{sin}^{−\mathrm{1}} \mathrm{5},\mathrm{cos}^{−\mathrm{1}} \mathrm{5}=\theta\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{sin}\varphi=\mathrm{5},\mathrm{cos}\theta=\mathrm{5}\Rightarrow\mathrm{sin}\varphi=\mathrm{cos}\theta \\ $$$$\Leftrightarrow\mathrm{sin}\varphi=\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}−\theta\right)\Rightarrow\varphi=\frac{\pi}{\mathrm{2}}−\theta+\mathrm{2k}\pi \\ $$$$\Leftrightarrow\varphi+\theta=\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi \\ $$$$\mathrm{But}\:\mathrm{bythe}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\:,\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{we}\:\mathrm{have}\:\frac{−\pi}{\mathrm{2}}\leqslant\varphi\leqslant\frac{\pi}{\mathrm{2}}, \\ $$$$\mathrm{and}\:\mathrm{0}\leqslant\theta\leqslant\pi\:\mathrm{Hence}\:\frac{−\pi}{\mathrm{2}}\leqslant\varphi+\theta\leqslant\frac{\mathrm{3}\pi}{\mathrm{2}},\mathrm{so} \\ $$$$−\frac{\pi}{\mathrm{2}}\leqslant\varphi+\theta=\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\leqslant\frac{\mathrm{3}\pi}{\mathrm{2}}\Rightarrow\mathrm{k}=\mathrm{0} \\ $$$$\Rightarrow\boldsymbol{\varphi}+\boldsymbol{\theta}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\Rightarrow\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \mathrm{5}+\boldsymbol{\mathrm{cos}}^{−\mathrm{1}} \mathrm{5}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\left(\boldsymbol{\mathrm{Q}}.\boldsymbol{\mathrm{E}}.\boldsymbol{\mathrm{D}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com