Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110287 by mathdave last updated on 28/Aug/20

Commented by bemath last updated on 28/Aug/20

sin^(−1) (5)=(π/2)−cos^(−1) (5)  sin (sin^(−1) (5))=sin ((π/2)−cos^(−1) (5))  ⇒ 5 = cos (cos^(−1) (5))  ⇒ 5 = 5 ( true)

sin1(5)=π2cos1(5)sin(sin1(5))=sin(π2cos1(5))5=cos(cos1(5))5=5(true)

Commented by udaythool last updated on 28/Aug/20

its straight forward...  assume lhs as θ then take sin of  both sides, use trigonometric  relation; sin(A+B) and sin  (cos^(−1) x)=(√(1−x^2 )) we get  25+(√(−24))(√(−24))=1=sinθ⇒θ=(π/2)

itsstraightforward...assumelhsasθthentakesinofbothsides,usetrigonometricrelation;sin(A+B)andsin(cos1x)=1x2weget25+2424=1=sinθθ=π2

Answered by $@y@m last updated on 28/Aug/20

Let sin^(−1) 5=θ  sin θ=5  ⇒ cos ((π/2)−θ)=5  ⇒cos^(−1) 5=(π/2)−θ  ⇒θ+cos^(−1) 5=(π/2)  ⇒sin^(−1) 5+cos^(−1) 5=(π/2)

Letsin15=θsinθ=5cos(π2θ)=5cos15=π2θθ+cos15=π2sin15+cos15=π2

Commented by $@y@m last updated on 28/Aug/20

It is literally correct but theoretically  wrong as sin θ≠5 for any θ

Itisliterallycorrectbuttheoreticallywrongassinθ5foranyθ

Answered by Her_Majesty last updated on 28/Aug/20

sin^(−1) z+cos^(−1) z=π/2∀z∈C

sin1z+cos1z=π/2zC

Commented by $@y@m last updated on 28/Aug/20

Commented by Her_Majesty last updated on 28/Aug/20

domains are only relevant within R  remember the domain of (√x) is R^+  but the  next step is to define i:=(√(−1)) and now the  domain is R (x>0 ⇒ (√(−x))=i(√x))  similar for sin^(−1) , cos^(−1) ...

domainsareonlyrelevantwithinRrememberthedomainofxisR+butthenextstepistodefinei:=1andnowthedomainisR(x>0x=ix)similarforsin1,cos1...

Commented by $@y@m last updated on 29/Aug/20

Can you give me an example (i.e.  value of θ) for which sin^(−1) 5=θ ?

Canyougivemeanexample(i.e.valueofθ)forwhichsin15=θ?

Commented by Her_Majesty last updated on 29/Aug/20

x=siny ⇔ y=sin^(−1) x  siny=x=((e^(iy) −e^(−iy) )/(2i))  2ix=e^(iy) −e^(−iy)   t=e^(iy)  ⇔ y=−ilnt  2ix=t+1/t  t^2 −2ixt−1=0  t=ix±(√((ix)^2 +1))=ix±i(√(x^2 −1))=i(x±(√(x^2 −1)))  y=−ilnt=−iln(i(x±(√(x^2 −1))))=  =−i(lni+ln(x±(√(x^2 −1))))=  =(π/2)−iln(x±(√(x^2 −1)))  ⇒  sin^(−1) x=(π/2)−iln(x±(√(x^2 −1)))

x=sinyy=sin1xsiny=x=eiyeiy2i2ix=eiyeiyt=eiyy=ilnt2ix=t+1/tt22ixt1=0t=ix±(ix)2+1=ix±ix21=i(x±x21)y=ilnt=iln(i(x±x21))==i(lni+ln(x±x21))==π2iln(x±x21)sin1x=π2iln(x±x21)

Commented by Her_Majesty last updated on 29/Aug/20

similar we get  cos^(−1) x=−iln(x±(√(x^2 −1)))

similarwegetcos1x=iln(x±x21)

Answered by 1549442205PVT last updated on 29/Aug/20

Put ϕ=sin^(−1) 5,cos^(−1) 5=θ we have  sinϕ=5,cosθ=5⇒sinϕ=cosθ  ⇔sinϕ=sin((π/2)−θ)⇒ϕ=(π/2)−θ+2kπ  ⇔ϕ+θ=(π/2)+2kπ  But bythe definition of the function  sin^(−1) (x) , cos^(−1) (x)we have ((−π)/2)≤ϕ≤(π/2),  and 0≤θ≤π Hence ((−π)/2)≤ϕ+θ≤((3π)/2),so  −(π/2)≤ϕ+θ=(π/2)+2kπ≤((3π)/2)⇒k=0  ⇒𝛟+𝛉=(𝛑/2)⇒sin^(−1) 5+cos^(−1) 5=(𝛑/2)(Q.E.D)

Putφ=sin15,cos15=θwehavesinφ=5,cosθ=5sinφ=cosθsinφ=sin(π2θ)φ=π2θ+2kπφ+θ=π2+2kπButbythedefinitionofthefunctionsin1(x),cos1(x)wehaveπ2φπ2,and0θπHenceπ2φ+θ3π2,soπ2φ+θ=π2+2kπ3π2k=0φ+θ=π2sin15+cos15=π2(Q.E.D)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com