Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 11036 by suci last updated on 08/Mar/17

li_(n→∼) m Σ_(k=1) ^n  ((8n^2 )/(n^4 +1)) =....?

$${l}\underset{{n}\rightarrow\sim} {{i}m}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{8}{n}^{\mathrm{2}} }{{n}^{\mathrm{4}} +\mathrm{1}}\:=....? \\ $$

Commented by FilupS last updated on 08/Mar/17

S=lim_(n→∞)  Σ_(k=1) ^n  ((8n^2 )/(n^4 +1))  S=Σ_(k=1) ^∞  (∞/∞)  S=Σ_(k=1) ^∞  ((16n)/(4n^3 ))  S=Σ_(k=1) ^∞  ((16)/(4n^2 ))  S=4Σ_(k=1) ^∞  (1/n^2 )  n→∞  S=4Σ_(k=1) ^∞ 0  S=0

$${S}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{8}{n}^{\mathrm{2}} }{{n}^{\mathrm{4}} +\mathrm{1}} \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\infty}{\infty} \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{16}{n}}{\mathrm{4}{n}^{\mathrm{3}} } \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{16}}{\mathrm{4}{n}^{\mathrm{2}} } \\ $$$${S}=\mathrm{4}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$${n}\rightarrow\infty \\ $$$${S}=\mathrm{4}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{0} \\ $$$${S}=\mathrm{0} \\ $$

Answered by ajfour last updated on 09/Mar/17

2π(√2)  .

$$\mathrm{2}\pi\sqrt{\mathrm{2}}\:\:. \\ $$

Commented by ajfour last updated on 09/Mar/17

reduces to   4∫_0 ^(π/2) (√(tan θ ))dθ = 2π(√2) .

$${reduces}\:{to}\:\:\:\mathrm{4}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \sqrt{\mathrm{tan}\:\theta\:}{d}\theta\:=\:\mathrm{2}\pi\sqrt{\mathrm{2}}\:. \\ $$

Commented by FilupS last updated on 09/Mar/17

proof?

$$\mathrm{proof}? \\ $$

Commented by ajfour last updated on 12/Mar/17

L=lim_(n→∞ ) Σ_(k=1) ^n (((8k^2 )/(k^4 +1)))  L=lim_(n→∞ ) S_n   S_n =(8/n) Σ_(k=1) ^n  (((k/n)^2 )/((k/n)^4 +(1/n)^4 )) ((1/n))  now (k/n) =x ; (1/n)=(((k+1)−k)/n) =dx  S_n = (8/n)∫_0 ^1 (x^2 /(x^4 +a^4 )) dx   where (1/n^4 ) =a^4  (for ease)  let x^2 =a^2 tan θ⇒x=a(√(tan θ))  ⇒ x^4 +a^4 =a^4 sec^2 θ  dx=((asec^2 θdθ)/(2(√(tan θ))))  , substituting  S_n =(8/n)∫_0 ^(π/2)   (((a^3 /2)sec^2 θ(√(tan θ))dθ)/(a^4 sec^2 θ))    L=lim_(n→∞  ) [ (8/(2na))∫_0 ^(π/2)  (√(tan θ)) dθ]    as n→ ∞, na→1 for a^4 =(1/n^4 )  so L= 4∫_0 ^(π/2)  (√(tan θ)) dθ  L=4((π/(√2)))=2π(√2)  .

$${L}={lim}_{{n}\rightarrow\infty\:} \underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{8}{k}^{\mathrm{2}} }{{k}^{\mathrm{4}} +\mathrm{1}}\right) \\ $$$${L}={lim}_{{n}\rightarrow\infty\:} {S}_{{n}} \\ $$$${S}_{{n}} =\frac{\mathrm{8}}{{n}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\left({k}/{n}\right)^{\mathrm{2}} }{\left({k}/{n}\right)^{\mathrm{4}} +\left(\mathrm{1}/{n}\right)^{\mathrm{4}} }\:\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$${now}\:\frac{{k}}{{n}}\:={x}\:;\:\frac{\mathrm{1}}{{n}}=\frac{\left({k}+\mathrm{1}\right)−{k}}{{n}}\:={dx} \\ $$$${S}_{{n}} =\:\frac{\mathrm{8}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +{a}^{\mathrm{4}} }\:{dx}\: \\ $$$${where}\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:={a}^{\mathrm{4}} \:\left({for}\:{ease}\right) \\ $$$${let}\:{x}^{\mathrm{2}} ={a}^{\mathrm{2}} \mathrm{tan}\:\theta\Rightarrow{x}={a}\sqrt{\mathrm{tan}\:\theta} \\ $$$$\Rightarrow\:{x}^{\mathrm{4}} +{a}^{\mathrm{4}} ={a}^{\mathrm{4}} \mathrm{sec}\:^{\mathrm{2}} \theta \\ $$$${dx}=\frac{{a}\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta}{\mathrm{2}\sqrt{\mathrm{tan}\:\theta}}\:\:,\:{substituting} \\ $$$${S}_{{n}} =\frac{\mathrm{8}}{{n}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \:\:\frac{\left({a}^{\mathrm{3}} /\mathrm{2}\right)\mathrm{sec}\:^{\mathrm{2}} \theta\sqrt{\mathrm{tan}\:\theta}{d}\theta}{{a}^{\mathrm{4}} \mathrm{sec}\:^{\mathrm{2}} \theta} \\ $$$$\:\:{L}={lim}_{{n}\rightarrow\infty\:\:} \left[\:\frac{\mathrm{8}}{\mathrm{2}{na}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \:\sqrt{\mathrm{tan}\:\theta}\:{d}\theta\right] \\ $$$$\:\:{as}\:{n}\rightarrow\:\infty,\:{na}\rightarrow\mathrm{1}\:{for}\:{a}^{\mathrm{4}} =\frac{\mathrm{1}}{{n}^{\mathrm{4}} } \\ $$$${so}\:{L}=\:\mathrm{4}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \:\sqrt{\mathrm{tan}\:\theta}\:{d}\theta \\ $$$${L}=\mathrm{4}\left(\frac{\pi}{\sqrt{\mathrm{2}}}\right)=\mathrm{2}\pi\sqrt{\mathrm{2}}\:\:. \\ $$

Commented by FilupS last updated on 12/Mar/17

oh, they made a typo in the question.  i see now

$$\mathrm{oh},\:\mathrm{they}\:\mathrm{made}\:\mathrm{a}\:\mathrm{typo}\:\mathrm{in}\:\mathrm{the}\:\mathrm{question}. \\ $$$$\mathrm{i}\:\mathrm{see}\:\mathrm{now} \\ $$

Commented by ajfour last updated on 12/Mar/17

the Σ should make sense.

$${the}\:\Sigma\:{should}\:{make}\:{sense}. \\ $$

Answered by DrDaveR last updated on 22/Mar/17

−4π.Imag(((√(−i)))cot(π((√(−i)))) which is about 9.028. Rewrite the  function in the sum as 4(1/(k^2 +i)+1/(k^2 −i)) then use   contangent formula for the sum of these series instead

$$−\mathrm{4}\pi.{Imag}\left(\left(\sqrt{−{i}}\right){cot}\left(\pi\left(\sqrt{−{i}}\right)\right)\:{which}\:{is}\:{about}\:\mathrm{9}.\mathrm{028}.\:{Rewrite}\:{the}\right. \\ $$$${function}\:{in}\:{the}\:{sum}\:{as}\:\mathrm{4}\left(\mathrm{1}/\left({k}^{\mathrm{2}} +{i}\right)+\mathrm{1}/\left({k}^{\mathrm{2}} −{i}\right)\right)\:{then}\:{use}\: \\ $$$${contangent}\:{formula}\:{for}\:{the}\:{sum}\:{of}\:{these}\:{series}\:{instead} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com