Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110365 by mathdave last updated on 28/Aug/20

Answered by Rasheed.Sindhi last updated on 29/Aug/20

wxyz=120 , wxz−y=26,  xyz−w=58  ,  wz+xy=22  ((wxyz)/y)−y=26⇒((120)/y)−y=26....(ii)  ((wxyz)/w)−w=58⇒((120)/w)−w=58...(iii)  ((wxyz)/(xy))+xy=22⇒((120)/(xy))+xy=22...(iv)  (ii)⇒y^2 +26y−120=0              y=4,−30  (iii)⇒w^2 +58w−120=0              w=2,−60  (iv)⇒(xy)^2 −22(xy)+120=0  y=4→16x^2 −88x+120=0                   2x^2 −11x+15=0             (x−3)(2x−5)=0              x=3,5/2  y=−30→900x^2 +660x+120=0                        15x^2 +11x+2=0                        (3x+1)(5x+2)=0                         x=−1/3 , −2/5

wxyz=120,wxzy=26,xyzw=58,wz+xy=22wxyzyy=26120yy=26....(ii)wxyzww=58120ww=58...(iii)wxyzxy+xy=22120xy+xy=22...(iv)(ii)y2+26y120=0y=4,30(iii)w2+58w120=0w=2,60(iv)(xy)222(xy)+120=0y=416x288x+120=02x211x+15=0(x3)(2x5)=0x=3,5/2y=30900x2+660x+120=015x2+11x+2=0(3x+1)(5x+2)=0x=1/3,2/5

Answered by kkc last updated on 28/Aug/20

W=2 X=3 Y=4 z=5

W=2X=3Y=4z=5

Answered by 1549442205PVT last updated on 29/Aug/20

Set xyz=a,w=b⇒ { ((ab=120)),((a−b=58)) :}⇔ { ((a.(−b)=−120)),((a+(−b)=58)) :}  a,(−b) are roots of the equation  t^2 −58t−120=0  ,Δ^′ =29^2 +120=31^2   ⇒(a,−b)∈{(60,−2),(−2,60)}  ⇒(xyz,w)∈{(60,2),(−2,−60)}  Set xy=c,wz=d⇒ { ((c+d=22)),((cd=120)) :}  c,d are roots of the equation  t^2 −22t+120=0 Δ′=11^2 −120=1  ⇒(c,d)∈{(12,10),(10,12)}  •a=xyz=60,b=w=2,c=xy=12,d=wz=10  ⇒z=5,wxz−y=26⇒10x−y=26  ⇒x(10x−26)=12⇔10x^2 −26x−12=0  5x^2 −13x−6=0⇒x=(13±17)/10  x(1⇒x∈{3,−2/5}⇒y∈{4,−30}  we get (x,y,z,w)∈{(3,4,5,2),(((−2)/5),−30,5,2)}  •a=xyz=−2,b=w=−60,c=xy=10,d=wz=12  ⇒z=−(1/5),wxz−y=26⇒12x−y=26  x(12x−26)=10⇔12x^2 −26x=10  ⇔6x^2 −13x−5=0, Δ=169+120=17^2   x∈{(5/2),((−2)/6)}⇒y∈{4;−30}  (x,y,z,w)∈{((5/2),4,((−1)/5),−60),(((−1)/3),−30,((−1)/5),−60)}  •a=xyz=60,b=w=2,c=xy=10,d=wz=12  ⇒z=6,wxz−y=26⇒12x−y=26  ⇒x(12x−26)=10⇔12x^2 −26x−10=0  ⇔6x^2 −13x−5=0.Like above we get  x∈{(5/2),((−2)/6)}⇒y∈{4;−30}  ⇒(x,y,z,w)∈{((5/2),4,6,2),(((−1)/3),−30,6,2)}  •a=xyz=−2,b=w=−60,c=xy=12,d=wz=10  ⇒z=((−1)/6),wxz−y=26⇔10x−y=12  x(10x−26)=12⇔5x^2 −13x−6=0  ⇒x∈{3,−2/5}⇒y∈{4,−30}  ⇒(x,y,z,w)∈{(3,4,((−1)/6),−60),(((−2)/5),−30,((−1)/6);−60)}

Setxyz=a,w=b{ab=120ab=58{a.(b)=120a+(b)=58a,(b)arerootsoftheequationt258t120=0,Δ=292+120=312(a,b){(60,2),(2,60)}(xyz,w){(60,2),(2,60)}Setxy=c,wz=d{c+d=22cd=120c,darerootsoftheequationt222t+120=0Δ=112120=1(c,d){(12,10),(10,12)}a=xyz=60,b=w=2,c=xy=12,d=wz=10z=5,wxzy=2610xy=26x(10x26)=1210x226x12=05x213x6=0x=(13±17)/10x(1x{3,2/5}y{4,30}weget(x,y,z,w){(3,4,5,2),(25,30,5,2)}a=xyz=2,b=w=60,c=xy=10,d=wz=12z=15,wxzy=2612xy=26x(12x26)=1012x226x=106x213x5=0,Δ=169+120=172x{52,26}y{4;30}(x,y,z,w){(52,4,15,60),(13,30,15,60)}a=xyz=60,b=w=2,c=xy=10,d=wz=12z=6,wxzy=2612xy=26x(12x26)=1012x226x10=06x213x5=0.Likeabovewegetx{52,26}y{4;30}(x,y,z,w){(52,4,6,2),(13,30,6,2)}a=xyz=2,b=w=60,c=xy=12,d=wz=10z=16,wxzy=2610xy=12x(10x26)=125x213x6=0x{3,2/5}y{4,30}(x,y,z,w){(3,4,16,60),(25,30,16;60)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com