Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110395 by mathdave last updated on 28/Aug/20

prove to ealier problem of   ∫_0 ^1 ∫_0 ^1 ((tanh^(−1) ((x)^(1/4) )tanh^(−1) ((y)^(1/4) ))/(x(√y)))dxdy=π^2   solution   let  I=∫_0 ^1 ((tanh^(−1) ((x)^(1/4) ))/x)dx∫_0 ^1 ((tanh^(−1) ((y)^(1/4) ))/(√y))dy=A.B  let m=x^(1/4)   and  dx=4m^3     A=∫_0 ^1 ((tanh^(−1) (m))/m^4 )×4m^3 dm=4∫_0 ^1 ((tanh^(−1) (m))/m)dm  but series of tanh^(−1) (m)=Σ_(k=0) ^∞ (m^(2k+1) /(2k+1))  A=4Σ_(k=0) ^∞ (1/(2k+1))∫_0 ^1 (m^(2k+1) /m)dm=4Σ_(k=o) ^∞ (1/(2k+1))∫_0 ^1 m^(2k) dm  A=4Σ_(k=0) ^∞ (1/((2k+1)^2 ))=4×(1/2)Σ_(k=−∞) ^∞ (1/((2k+1)^2 ))  recall that  Σ_(n=−∞) ^∞ (1/((an+1)^m ))=−(π/((a)^m ))lim_(z→−(1/a) )   (1/((m−1)!))(d^((m−1)) /dz^((m−1)) )[cot(πz)]  ∵A=2[−(π/((2)^2 ))lim_(z→−(1/2))  (1/((2−1)!))(d/dz)[cot(πz)]  A=−(π/2)lim_(z→−(1/2))  [−πcosec^2 (−(π/2))]=(π^2 /2).....(1)  then  B=∫_0 ^1 ((tanh^(−1) ((y)^(1/4) ))/(√y))dy  let  n=y^(1/4)    and   dy=4n^3   B=∫_0 ^1 ((tanh^(−1) (n))/n^2 )×4n^3 dn=4∫_0 ^1 ntanh^(−1) (n)dn  B=4Σ_(k=0) ^∞ (1/(2k+1))∫_0 ^1 n^(2k+2) dn=4Σ_(k=0) ^∞ (1/((2k+1)(2k+3)))  B=4×(1/2)Σ_(k=0) ^∞ ((1/(2k+1))−(1/(2k+3)))  B=2lim_(k→∞) (1−(1/3)+(1/3)−(1/5)+(1/5).......+(1/(2k+1)))=2.....(2)  the series is telescoping  but I=A×B=(π^2 /2)×2=π^2 ..............(3)  ∫_0 ^1 ∫_0 ^1 ((tanh^(−1) ((x)^(1/4) )tanh^(−1) ((y)^(1/4) ))/(x(√y)))dxdy=π^2           Q.E.D       by mathdave(28/08/2020)

$${prove}\:{to}\:{ealier}\:{problem}\:{of}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{x}}\right)\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{y}}\right)}{{x}\sqrt{{y}}}{dxdy}=\pi^{\mathrm{2}} \\ $$$${solution}\: \\ $$$${let} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{x}}\right)}{{x}}{dx}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{y}}\right)}{\sqrt{{y}}}{dy}={A}.{B} \\ $$$${let}\:{m}={x}^{\frac{\mathrm{1}}{\mathrm{4}}} \:\:{and}\:\:{dx}=\mathrm{4}{m}^{\mathrm{3}} \:\: \\ $$$${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left({m}\right)}{{m}^{\mathrm{4}} }×\mathrm{4}{m}^{\mathrm{3}} {dm}=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left({m}\right)}{{m}}{dm} \\ $$$${but}\:{series}\:{of}\:\mathrm{tanh}^{−\mathrm{1}} \left({m}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{m}^{\mathrm{2}{k}+\mathrm{1}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$${A}=\mathrm{4}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{m}^{\mathrm{2}{k}+\mathrm{1}} }{{m}}{dm}=\mathrm{4}\underset{{k}={o}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} {m}^{\mathrm{2}{k}} {dm} \\ $$$${A}=\mathrm{4}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{4}×\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${recall}\:{that} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({an}+\mathrm{1}\right)^{{m}} }=−\frac{\pi}{\left({a}\right)^{{m}} }\underset{{z}\rightarrow−\frac{\mathrm{1}}{{a}}\:} {\mathrm{lim}} \\ $$$$\frac{\mathrm{1}}{\left({m}−\mathrm{1}\right)!}\frac{{d}^{\left({m}−\mathrm{1}\right)} }{{dz}^{\left({m}−\mathrm{1}\right)} }\left[\mathrm{cot}\left(\pi{z}\right)\right] \\ $$$$\because{A}=\mathrm{2}\left[−\frac{\pi}{\left(\mathrm{2}\right)^{\mathrm{2}} }\underset{{z}\rightarrow−\frac{\mathrm{1}}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\frac{{d}}{{dz}}\left[\mathrm{cot}\left(\pi{z}\right)\right]\right. \\ $$$${A}=−\frac{\pi}{\mathrm{2}}\underset{{z}\rightarrow−\frac{\mathrm{1}}{\mathrm{2}}} {\mathrm{lim}}\:\left[−\pi\mathrm{cosec}^{\mathrm{2}} \left(−\frac{\pi}{\mathrm{2}}\right)\right]=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}.....\left(\mathrm{1}\right) \\ $$$${then}\:\:{B}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{y}}\right)}{\sqrt{{y}}}{dy} \\ $$$${let}\:\:{n}={y}^{\frac{\mathrm{1}}{\mathrm{4}}} \:\:\:{and}\:\:\:{dy}=\mathrm{4}{n}^{\mathrm{3}} \\ $$$${B}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left({n}\right)}{{n}^{\mathrm{2}} }×\mathrm{4}{n}^{\mathrm{3}} {dn}=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} {n}\mathrm{tanh}^{−\mathrm{1}} \left({n}\right){dn} \\ $$$${B}=\mathrm{4}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} {n}^{\mathrm{2}{k}+\mathrm{2}} {dn}=\mathrm{4}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{3}\right)} \\ $$$${B}=\mathrm{4}×\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{3}}\right) \\ $$$${B}=\mathrm{2}\underset{{k}\rightarrow\infty} {\mathrm{li}{m}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}}.......+\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\right)=\mathrm{2}.....\left(\mathrm{2}\right) \\ $$$${the}\:{series}\:{is}\:{telescoping} \\ $$$${but}\:{I}={A}×{B}=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}×\mathrm{2}=\pi^{\mathrm{2}} ..............\left(\mathrm{3}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{x}}\right)\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{y}}\right)}{{x}\sqrt{{y}}}{dxdy}=\pi^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:{Q}.{E}.{D}\:\:\:\: \\ $$$$\:{by}\:{mathdave}\left(\mathrm{28}/\mathrm{08}/\mathrm{2020}\right) \\ $$

Commented by Aziztisffola last updated on 28/Aug/20

here 29/08

$$\mathrm{here}\:\mathrm{29}/\mathrm{08}\: \\ $$

Commented by mathdave last updated on 28/Aug/20

at where

$${at}\:{where}\: \\ $$

Commented by mathdave last updated on 28/Aug/20

the working are all super correct

$${the}\:{working}\:{are}\:{all}\:{super}\:{correct} \\ $$

Commented by Aziztisffola last updated on 28/Aug/20

There is one mistake.

$$\mathrm{There}\:\mathrm{is}\:\mathrm{one}\:\mathrm{mistake}. \\ $$

Commented by mathdave last updated on 28/Aug/20

smile thanks i thought today is 29 ,i  didnt check the date before

$${smile}\:{thanks}\:{i}\:{thought}\:{today}\:{is}\:\mathrm{29}\:,{i} \\ $$$${didnt}\:{check}\:{the}\:{date}\:{before}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com