Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 110449 by mathmax by abdo last updated on 29/Aug/20

find lim_(x→0)  ((arctan(x−sinx)−arctan(1−cosx))/x^2 )

$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{arctan}\left(\mathrm{x}−\mathrm{sinx}\right)−\mathrm{arctan}\left(\mathrm{1}−\mathrm{cosx}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$

Answered by bemath last updated on 29/Aug/20

 lim_(x→0)  ((x−sin x−(1−cos x))/x^2 ) =   lim_(x→0)  ((x−(x−(1/6)x^3 )−(1−(1−(1/2)x^2 )))/x^2 ) =   lim_(x→0)  (((1/6)x^3 −(1/2)x^2 )/x^2 ) = −(1/2)

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}−\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} \right)−\left(\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)\right)}{\mathrm{x}^{\mathrm{2}} }\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by mathmax by abdo last updated on 29/Aug/20

let use hospital theorem   u(x)=arctan(x−sinx)−arctan(1−cosx)  v(x) =x^2     we have u^′ (x) =((1−cosx)/(1+(x−sinx)^2 ))−((sinx)/(1+(1−cosx)^2 ))  ⇒u^((2)) (x)=((sinx(1+(x−sinx)^2 )−2(1−cosx)(1−cosx))/({1+(x−sinx}^2 ))  −((cosx{1+(1−cosx)^2 }−2{sinx}{1+(1−cosx)^2 })/({1+(1−cosx)^2 }^2 ))  ⇒lim_(x→0) u^((2)) (x) =0−(1/1) =−1  also v^′ (x)=2x ⇒v^((2)) (x)=2 ⇒  lim_(x→0) v^((2)) (x) =2 ⇒lim_(x→0)    ((u^((2)) (x))/(v^((2)) (x))) =−(1/2)

$$\mathrm{let}\:\mathrm{use}\:\mathrm{hospital}\:\mathrm{theorem}\:\:\:\mathrm{u}\left(\mathrm{x}\right)=\mathrm{arctan}\left(\mathrm{x}−\mathrm{sinx}\right)−\mathrm{arctan}\left(\mathrm{1}−\mathrm{cosx}\right) \\ $$$$\mathrm{v}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{2}} \:\:\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{u}^{'} \left(\mathrm{x}\right)\:=\frac{\mathrm{1}−\mathrm{cosx}}{\mathrm{1}+\left(\mathrm{x}−\mathrm{sinx}\right)^{\mathrm{2}} }−\frac{\mathrm{sinx}}{\mathrm{1}+\left(\mathrm{1}−\mathrm{cosx}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{u}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)=\frac{\mathrm{sinx}\left(\mathrm{1}+\left(\mathrm{x}−\mathrm{sinx}\right)^{\mathrm{2}} \right)−\mathrm{2}\left(\mathrm{1}−\mathrm{cosx}\right)\left(\mathrm{1}−\mathrm{cosx}\right)}{\left\{\mathrm{1}+\left(\mathrm{x}−\mathrm{sinx}\right\}^{\mathrm{2}} \right.} \\ $$$$−\frac{\mathrm{cosx}\left\{\mathrm{1}+\left(\mathrm{1}−\mathrm{cosx}\right)^{\mathrm{2}} \right\}−\mathrm{2}\left\{\mathrm{sinx}\right\}\left\{\mathrm{1}+\left(\mathrm{1}−\mathrm{cosx}\right)^{\mathrm{2}} \right\}}{\left\{\mathrm{1}+\left(\mathrm{1}−\mathrm{cosx}\right)^{\mathrm{2}} \right\}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{u}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)\:=\mathrm{0}−\frac{\mathrm{1}}{\mathrm{1}}\:=−\mathrm{1}\:\:\mathrm{also}\:\mathrm{v}^{'} \left(\mathrm{x}\right)=\mathrm{2x}\:\Rightarrow\mathrm{v}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)=\mathrm{2}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{v}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)\:=\mathrm{2}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{u}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)}{\mathrm{v}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)}\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com