All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 110450 by mathmax by abdo last updated on 29/Aug/20
find∫∫[0,1]2ln(x2+3y2)e−x2−3y2dxdy
Answered by mathmax by abdo last updated on 31/Aug/20
I=∫∫[0,1]ln(x2+3y2)e−x2−3y2dxdyweconsiderthediffeomorphismφ(r,θ)=(x,y)=(rcosθ,r3sinθ)=(φ1,φ2)Mjφ=(∂φ1∂r∂φ1∂θ∂φ2∂r∂φ2∂θ)=(cosθ−rsinθsinθ3r3cosθ)⇒detMj=r3cos2θ+r3sin2θ=r3wehave{0⩽x⩽10⩽y⩽1⇒{0⩽x⩽1⇒0⩽x2+3y2⩽4⇒0⩽r⩽2⇒0⩽3y⩽3I=∫∫0⩽r⩽2and0⩽θ⩽π2ln(r2)e−r2r3drdθ=π23∫022re−r2ln(r)dr=π3∫02re−r2ln(r)drbyparts∫02re−r2ln(r)dr=[−12(1−e−r2)ln(r)]02+∫0212(1−e−r2)drr=−12(1−e−4)(ln4)+12∫021−e−r2rdrwehave−e−r2=−∑n=0∞(−1)nr2nn!=−1+∑n=1∞(−1)nr2nn!⇒1−e−r2r=∑n=1∞(−1)nr2n−1n!⇒∫021−e−r2rdr=∑n=1∞(−1)nn!∫02r2n−1dr=∑n=1∞(−1)nn!(12n(2)2n)=∑n=1∞(−4)n2n(n!)⇒I=(e−4−1)ln(2)+14∑n=1∞(−4)nn(n!)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com