Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 110451 by mathmax by abdo last updated on 29/Aug/20

calculate U_n =∫_([(1/n),n[^2 )     (x^2 −y^2 )e^(−x^2 −y^2 ) dxdy  and lim_(n→+∞)  U_n

$$\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} } \mathrm{dxdy} \\ $$$$\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} \\ $$

Answered by mathmax by abdo last updated on 31/Aug/20

we consider the diffeomorphism   { ((x =rcosθ)),((y =rsinθ)) :}  0≤x<n and 0≤y<n ⇒0≤x^2  +y^2 <2n^2  ⇒0≤r^2 <2n^2  ⇒0≤r<n(√2)  ⇒U_n =∫∫_(0≤r<n(√2) and 0≤θ≤(π/2))   r^2 (cos^2 θ−sin^2 θ)e^(−r^2 )  rdrdθ  =∫_0 ^(n(√2))    r^3  e^(−r^2 )  dr .∫_0 ^(π/2)   cos(2θ)dθ   but   ∫_0 ^(π/2)  cos(2θ)dθ =[(1/2)sin(2θ)]_0 ^(π/2)  =0 ⇒ U_n =0  ∀n ⇒lim U_n =0

$$\mathrm{we}\:\mathrm{consider}\:\mathrm{the}\:\mathrm{diffeomorphism}\:\:\begin{cases}{\mathrm{x}\:=\mathrm{rcos}\theta}\\{\mathrm{y}\:=\mathrm{rsin}\theta}\end{cases} \\ $$$$\mathrm{0}\leqslant\mathrm{x}<\mathrm{n}\:\mathrm{and}\:\mathrm{0}\leqslant\mathrm{y}<\mathrm{n}\:\Rightarrow\mathrm{0}\leqslant\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} <\mathrm{2n}^{\mathrm{2}} \:\Rightarrow\mathrm{0}\leqslant\mathrm{r}^{\mathrm{2}} <\mathrm{2n}^{\mathrm{2}} \:\Rightarrow\mathrm{0}\leqslant\mathrm{r}<\mathrm{n}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{U}_{\mathrm{n}} =\int\int_{\mathrm{0}\leqslant\mathrm{r}<\mathrm{n}\sqrt{\mathrm{2}}\:\mathrm{and}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}} \:\:\mathrm{r}^{\mathrm{2}} \left(\mathrm{cos}^{\mathrm{2}} \theta−\mathrm{sin}^{\mathrm{2}} \theta\right)\mathrm{e}^{−\mathrm{r}^{\mathrm{2}} } \:\mathrm{rdrd}\theta \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{n}\sqrt{\mathrm{2}}} \:\:\:\mathrm{r}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{r}^{\mathrm{2}} } \:\mathrm{dr}\:.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\mathrm{cos}\left(\mathrm{2}\theta\right)\mathrm{d}\theta\:\:\:\mathrm{but}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}\left(\mathrm{2}\theta\right)\mathrm{d}\theta\:=\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\mathrm{0}\:\Rightarrow\:\mathrm{U}_{\mathrm{n}} =\mathrm{0}\:\:\forall\mathrm{n}\:\Rightarrow\mathrm{lim}\:\mathrm{U}_{\mathrm{n}} =\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com