Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 110551 by shahria14 last updated on 29/Aug/20

Answered by Dwaipayan Shikari last updated on 29/Aug/20

∫_0 ^π (x/(1+sinx))dx=∫_0 ^π ((π−x)/(1+sinx))dx=I  2I=∫_0 ^π (π/(1+sinx))dx=2π∫_0 ^∞ (1/(1+((2t)/(1+t^2 )))).(1/(1+t^2 ))dt        (tan(x/2)=t)  2I=2π∫_0 ^∞ (1/((1+t)^2 ))dt  I=−π[(1/(1+t))]_0 ^∞ =π

$$\int_{\mathrm{0}} ^{\pi} \frac{{x}}{\mathrm{1}+{sinx}}{dx}=\int_{\mathrm{0}} ^{\pi} \frac{\pi−{x}}{\mathrm{1}+{sinx}}{dx}={I} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{1}+{sinx}}{dx}=\mathrm{2}\pi\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}.\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:\:\:\:\:\:\:\left({tan}\frac{{x}}{\mathrm{2}}={t}\right) \\ $$$$\mathrm{2}{I}=\mathrm{2}\pi\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$${I}=−\pi\left[\frac{\mathrm{1}}{\mathrm{1}+{t}}\right]_{\mathrm{0}} ^{\infty} =\pi \\ $$

Answered by mathmax by abdo last updated on 30/Aug/20

I =∫_0 ^π  ((xdx)/(1+sinx)) changement x =π−t give   I =∫_0 ^π   ((π−t)/(1+sint)) dt =π ∫_0 ^(π )  (dt/(1+sint)) −I ⇒2I =π∫_0 ^π  (dt/(1+sint))  =_(tan((t/2))=u)     ∫_0 ^∞     ((2du)/((1+u^2 )(1+((2u)/(1+u^2 ))))) =∫_0 ^∞   ((2du)/(1+u^2  +2u)) =2∫_0 ^∞   (du/((1+u)^2 ))  =[((−2)/(1+u))]_0 ^∞  =1 ⇒2I =π ⇒I =(π/2)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{xdx}}{\mathrm{1}+\mathrm{sinx}}\:\mathrm{changement}\:\mathrm{x}\:=\pi−\mathrm{t}\:\mathrm{give}\: \\ $$$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{\pi−\mathrm{t}}{\mathrm{1}+\mathrm{sint}}\:\mathrm{dt}\:=\pi\:\int_{\mathrm{0}} ^{\pi\:} \:\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{sint}}\:−\mathrm{I}\:\Rightarrow\mathrm{2I}\:=\pi\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{sint}} \\ $$$$=_{\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)=\mathrm{u}} \:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2du}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{\mathrm{2u}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\right)}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} \:+\mathrm{2u}}\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{du}}{\left(\mathrm{1}+\mathrm{u}\right)^{\mathrm{2}} } \\ $$$$=\left[\frac{−\mathrm{2}}{\mathrm{1}+\mathrm{u}}\right]_{\mathrm{0}} ^{\infty} \:=\mathrm{1}\:\Rightarrow\mathrm{2I}\:=\pi\:\Rightarrow\mathrm{I}\:=\frac{\pi}{\mathrm{2}} \\ $$

Commented by mathmax by abdo last updated on 30/Aug/20

sorry 2I =2π ⇒ I =π

$$\mathrm{sorry}\:\mathrm{2I}\:=\mathrm{2}\pi\:\Rightarrow\:\mathrm{I}\:=\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com