Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 110591 by Aina Samuel Temidayo last updated on 29/Aug/20

Find the sum of all positive  two−digit integers that are divisible  by each of their digits.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{positive} \\ $$$$\mathrm{two}−\mathrm{digit}\:\mathrm{integers}\:\mathrm{that}\:\mathrm{are}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{each}\:\mathrm{of}\:\mathrm{their}\:\mathrm{digits}. \\ $$

Answered by Rasheed.Sindhi last updated on 30/Aug/20

Let N=10t+u is a number such  that u ∣ 10t+u ∧ t ∣ 10t+u        10t+u=mu ∧ 10t+u=nt   (N is common multiple of m & n)         u=((10t)/(m−1)) ∧ u=t(n−10)           ((10t)/(m−1))=t(n−10)  t≠0(∵ The number is of 2-digit)                ((10)/(m−1))=n−10     (m−1)(n−10)=10            m−1=a ∧ n−10=10/a                [ Where a ∣ 10 ]          ( m,n)=(a+1,10+((10)/a))  As N=common multiple of m & n  or a+1 & 10+((10)/a).   So,  N=k lcm(a+1,10+((10)/a)) for some k  (∈N)  Four possible cases  ^(★1)  m−1=1 ∧ n−10=10           (m,n)=(2,20)           N=k lcm(2,20)       N=20^(×) ,40^(×) ,60^(×) ,80^(×)  (No value of N)  ^(★2) m−1=2 ∧ n−10=5           (m,n)=(3,15)           N=klcm(3,15)         N=15,30^(×) ,45^(×) ,60^(×) ,75^(×) ,90^(×)   ^(★3) m−1=5 ∧ n−10=2            (m,n)=(6,12)               N=klcm(12,6)      N=12,24,36,48,60^(×) ,72^(×) ,84^(×) ,96^(×)   ^(★4) m−1=10 ∧ n−10=1             (m,n)=(11,11)            N=klcm(11,11)     N=11,22,33,44,55,66,77,88,99    Red numbers are successful.

$${Let}\:{N}=\mathrm{10}{t}+{u}\:{is}\:{a}\:{number}\:{such} \\ $$$${that}\:{u}\:\mid\:\mathrm{10}{t}+{u}\:\wedge\:{t}\:\mid\:\mathrm{10}{t}+{u} \\ $$$$\:\:\:\:\:\:\mathrm{10}{t}+{u}={mu}\:\wedge\:\mathrm{10}{t}+{u}={nt} \\ $$$$\:\left({N}\:{is}\:{common}\:{multiple}\:{of}\:{m}\:\&\:{n}\right) \\ $$$$\:\:\:\:\:\:\:{u}=\frac{\mathrm{10}{t}}{{m}−\mathrm{1}}\:\wedge\:{u}={t}\left({n}−\mathrm{10}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{10}{t}}{{m}−\mathrm{1}}={t}\left({n}−\mathrm{10}\right) \\ $$$${t}\neq\mathrm{0}\left(\because\:{The}\:{number}\:{is}\:{of}\:\mathrm{2}-{digit}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{10}}{{m}−\mathrm{1}}={n}−\mathrm{10} \\ $$$$\:\:\:\left({m}−\mathrm{1}\right)\left({n}−\mathrm{10}\right)=\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}−\mathrm{1}={a}\:\wedge\:{n}−\mathrm{10}=\mathrm{10}/{a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{Where}\:{a}\:\mid\:\mathrm{10}\:\right] \\ $$$$\:\:\:\:\:\:\:\:\left(\:{m},{n}\right)=\left({a}+\mathrm{1},\mathrm{10}+\frac{\mathrm{10}}{{a}}\right) \\ $$$${As}\:{N}={common}\:{multiple}\:{of}\:{m}\:\&\:{n} \\ $$$${or}\:{a}+\mathrm{1}\:\&\:\mathrm{10}+\frac{\mathrm{10}}{{a}}.\: \\ $$$${So}, \\ $$$${N}={k}\:\mathrm{lcm}\left({a}+\mathrm{1},\mathrm{10}+\frac{\mathrm{10}}{{a}}\right)\:\mathrm{for}\:\mathrm{some}\:\mathrm{k} \\ $$$$\left(\in\mathbb{N}\right) \\ $$$${Four}\:{possible}\:{cases} \\ $$$$\:^{\bigstar\mathrm{1}} \:{m}−\mathrm{1}=\mathrm{1}\:\wedge\:{n}−\mathrm{10}=\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\left({m},{n}\right)=\left(\mathrm{2},\mathrm{20}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{N}={k}\:\mathrm{lcm}\left(\mathrm{2},\mathrm{20}\right) \\ $$$$\:\:\:\:\:{N}=\overset{×} {\mathrm{20}},\overset{×} {\mathrm{40}},\overset{×} {\mathrm{60}},\overset{×} {\mathrm{80}}\:\left({No}\:{value}\:{of}\:{N}\right) \\ $$$$\:^{\bigstar\mathrm{2}} {m}−\mathrm{1}=\mathrm{2}\:\wedge\:{n}−\mathrm{10}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\left({m},{n}\right)=\left(\mathrm{3},\mathrm{15}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{N}={k}\mathrm{lcm}\left(\mathrm{3},\mathrm{15}\right) \\ $$$$\:\:\:\:\:\:\:{N}=\mathrm{15},\overset{×} {\mathrm{30}},\overset{×} {\mathrm{45}},\overset{×} {\mathrm{60}},\overset{×} {\mathrm{75}},\overset{×} {\mathrm{90}} \\ $$$$\:^{\bigstar\mathrm{3}} {m}−\mathrm{1}=\mathrm{5}\:\wedge\:{n}−\mathrm{10}=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left({m},{n}\right)=\left(\mathrm{6},\mathrm{12}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{N}={klcm}\left(\mathrm{12},\mathrm{6}\right) \\ $$$$\:\:\:\:{N}=\mathrm{12},\mathrm{24},\mathrm{36},\mathrm{48},\overset{×} {\mathrm{60}},\overset{×} {\mathrm{72}},\overset{×} {\mathrm{84}},\overset{×} {\mathrm{96}} \\ $$$$\:^{\bigstar\mathrm{4}} {m}−\mathrm{1}=\mathrm{10}\:\wedge\:{n}−\mathrm{10}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left({m},{n}\right)=\left(\mathrm{11},\mathrm{11}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{N}={k}\mathrm{lcm}\left(\mathrm{11},\mathrm{11}\right) \\ $$$$\:\:\:{N}=\mathrm{11},\mathrm{22},\mathrm{33},\mathrm{44},\mathrm{55},\mathrm{66},\mathrm{77},\mathrm{88},\mathrm{99} \\ $$$$\:\:{Red}\:{numbers}\:{are}\:{successful}. \\ $$

Commented by Aina Samuel Temidayo last updated on 29/Aug/20

Thanks but please try to complete it. I  post questions because I don′t really have any idea  of how to solve them.

$$\mathrm{Thanks}\:\mathrm{but}\:\mathrm{please}\:\mathrm{try}\:\mathrm{to}\:\mathrm{complete}\:\mathrm{it}.\:\mathrm{I} \\ $$$$\mathrm{post}\:\mathrm{questions}\:\mathrm{because}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{really}\:\mathrm{have}\:\mathrm{any}\:\mathrm{idea} \\ $$$$\mathrm{of}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{them}. \\ $$

Commented by Rasheed.Sindhi last updated on 30/Aug/20

Completed the answer

$${Completed}\:{the}\:{answer} \\ $$

Answered by floor(10²Eta[1]) last updated on 29/Aug/20

first of all, we have 3 obvious things:  (1):this works with all multiple of 11  (2):this doesn′t work with any prime   number (except 11)  (3):this doesn′t work with any multiple  of 10 (because we can′t say that 0 divides  something)    10a+b s.t. a∣10a+b∧b∣10a+b  ⇒a∣b and b∣10a  so or b∣10⇒b=1, 2 or 5  or b∣a⇒a=b (because a∣b)  but when a=b is the 1 case that i said  so let′s see when b=1, 2, 5  b=1⇒(11, 21, 31, 41, 51, 61, 71, 81, 91)  works: (11)  b=2⇒(12, 22, 32, 42, 52, 62, 72, 82, 92)  works: (12, 22)  b=5⇒(15, 25, 35, 45, 55, 65, 75, 85, 95)  works: (15, 55)  only cases that works:  (12, 15, and all multiples of 11)  so the sum of these numbers are  12+15+11(1+2+3+4+...+9)  =27+11.45=522

$$\mathrm{first}\:\mathrm{of}\:\mathrm{all},\:\mathrm{we}\:\mathrm{have}\:\mathrm{3}\:\mathrm{obvious}\:\mathrm{things}: \\ $$$$\left(\mathrm{1}\right):\mathrm{this}\:\mathrm{works}\:\mathrm{with}\:\mathrm{all}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{11} \\ $$$$\left(\mathrm{2}\right):\mathrm{this}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{work}\:\mathrm{with}\:\mathrm{any}\:\mathrm{prime}\: \\ $$$$\mathrm{number}\:\left(\mathrm{except}\:\mathrm{11}\right) \\ $$$$\left(\mathrm{3}\right):\mathrm{this}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{work}\:\mathrm{with}\:\mathrm{any}\:\mathrm{multiple} \\ $$$$\mathrm{of}\:\mathrm{10}\:\left(\mathrm{because}\:\mathrm{we}\:\mathrm{can}'\mathrm{t}\:\mathrm{say}\:\mathrm{that}\:\mathrm{0}\:\mathrm{divides}\right. \\ $$$$\left.\mathrm{something}\right) \\ $$$$ \\ $$$$\mathrm{10a}+\mathrm{b}\:\mathrm{s}.\mathrm{t}.\:\mathrm{a}\mid\mathrm{10a}+\mathrm{b}\wedge\mathrm{b}\mid\mathrm{10a}+\mathrm{b} \\ $$$$\Rightarrow\mathrm{a}\mid\mathrm{b}\:\mathrm{and}\:\mathrm{b}\mid\mathrm{10a} \\ $$$$\mathrm{so}\:\mathrm{or}\:\mathrm{b}\mid\mathrm{10}\Rightarrow\mathrm{b}=\mathrm{1},\:\mathrm{2}\:\mathrm{or}\:\mathrm{5} \\ $$$$\mathrm{or}\:\mathrm{b}\mid\mathrm{a}\Rightarrow\mathrm{a}=\mathrm{b}\:\left(\mathrm{because}\:\mathrm{a}\mid\mathrm{b}\right) \\ $$$$\mathrm{but}\:\mathrm{when}\:\mathrm{a}=\mathrm{b}\:\mathrm{is}\:\mathrm{the}\:\mathrm{1}\:\mathrm{case}\:\mathrm{that}\:\mathrm{i}\:\mathrm{said} \\ $$$$\mathrm{so}\:\mathrm{let}'\mathrm{s}\:\mathrm{see}\:\mathrm{when}\:\mathrm{b}=\mathrm{1},\:\mathrm{2},\:\mathrm{5} \\ $$$$\mathrm{b}=\mathrm{1}\Rightarrow\left(\mathrm{11},\:\mathrm{21},\:\mathrm{31},\:\mathrm{41},\:\mathrm{51},\:\mathrm{61},\:\mathrm{71},\:\mathrm{81},\:\mathrm{91}\right) \\ $$$$\mathrm{works}:\:\left(\mathrm{11}\right) \\ $$$$\mathrm{b}=\mathrm{2}\Rightarrow\left(\mathrm{12},\:\mathrm{22},\:\mathrm{32},\:\mathrm{42},\:\mathrm{52},\:\mathrm{62},\:\mathrm{72},\:\mathrm{82},\:\mathrm{92}\right) \\ $$$$\mathrm{works}:\:\left(\mathrm{12},\:\mathrm{22}\right) \\ $$$$\mathrm{b}=\mathrm{5}\Rightarrow\left(\mathrm{15},\:\mathrm{25},\:\mathrm{35},\:\mathrm{45},\:\mathrm{55},\:\mathrm{65},\:\mathrm{75},\:\mathrm{85},\:\mathrm{95}\right) \\ $$$$\mathrm{works}:\:\left(\mathrm{15},\:\mathrm{55}\right) \\ $$$$\mathrm{only}\:\mathrm{cases}\:\mathrm{that}\:\mathrm{works}: \\ $$$$\left(\mathrm{12},\:\mathrm{15},\:\mathrm{and}\:\mathrm{all}\:\mathrm{multiples}\:\mathrm{of}\:\mathrm{11}\right) \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{these}\:\mathrm{numbers}\:\mathrm{are} \\ $$$$\mathrm{12}+\mathrm{15}+\mathrm{11}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+...+\mathrm{9}\right) \\ $$$$=\mathrm{27}+\mathrm{11}.\mathrm{45}=\mathrm{522} \\ $$

Commented by Aina Samuel Temidayo last updated on 30/Aug/20

Thanks but I don′t think this is  correct.

$$\mathrm{Thanks}\:\mathrm{but}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{this}\:\mathrm{is} \\ $$$$\mathrm{correct}. \\ $$

Commented by floor(10²Eta[1]) last updated on 30/Aug/20

?????why

$$?????\mathrm{why} \\ $$

Answered by mr W last updated on 30/Aug/20

numbers in form aa are clear, other  numbers must be checked one by one.  we get totally 14 such numbers:  11  12  15  22  24  33  36  44  48  55  66  77  88  99

$${numbers}\:{in}\:{form}\:{aa}\:{are}\:{clear},\:{other} \\ $$$${numbers}\:{must}\:{be}\:{checked}\:{one}\:{by}\:{one}. \\ $$$${we}\:{get}\:{totally}\:\mathrm{14}\:{such}\:{numbers}: \\ $$$$\mathrm{11} \\ $$$$\mathrm{12} \\ $$$$\mathrm{15} \\ $$$$\mathrm{22} \\ $$$$\mathrm{24} \\ $$$$\mathrm{33} \\ $$$$\mathrm{36} \\ $$$$\mathrm{44} \\ $$$$\mathrm{48} \\ $$$$\mathrm{55} \\ $$$$\mathrm{66} \\ $$$$\mathrm{77} \\ $$$$\mathrm{88} \\ $$$$\mathrm{99} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com