Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 110704 by Aina Samuel Temidayo last updated on 30/Aug/20

Find the minimum value of  ((n^2 +1)/n)+(n/(n^2 +1)),n>0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$ $$\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}},\mathrm{n}>\mathrm{0} \\ $$

Answered by mr W last updated on 30/Aug/20

((n^2 +1)/n)+(n/(n^2 +1))  =(n+(1/n))+(1/((n+(1/n))))  n+(1/n)≥2(√(n×(1/n)))=2  so the question is to find the minimum  of function f(x)=x+(1/x) for x≥2.  f′(x)=1−(1/x^2 )>0 for x>1  that means f(x) is strictly increasing  for x>1, so for x≥2 we have  f(x)_(min) =f(2)=2+(1/2)=(5/2).

$$\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}}+\frac{{n}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$ $$=\left({n}+\frac{\mathrm{1}}{{n}}\right)+\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{{n}}\right)} \\ $$ $${n}+\frac{\mathrm{1}}{{n}}\geqslant\mathrm{2}\sqrt{{n}×\frac{\mathrm{1}}{{n}}}=\mathrm{2} \\ $$ $${so}\:{the}\:{question}\:{is}\:{to}\:{find}\:{the}\:{minimum} \\ $$ $${of}\:{function}\:{f}\left({x}\right)={x}+\frac{\mathrm{1}}{{x}}\:{for}\:{x}\geqslant\mathrm{2}. \\ $$ $${f}'\left({x}\right)=\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }>\mathrm{0}\:{for}\:{x}>\mathrm{1} \\ $$ $${that}\:{means}\:{f}\left({x}\right)\:{is}\:{strictly}\:{increasing} \\ $$ $${for}\:{x}>\mathrm{1},\:{so}\:{for}\:{x}\geqslant\mathrm{2}\:{we}\:{have} \\ $$ $${f}\left({x}\right)_{{min}} ={f}\left(\mathrm{2}\right)=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{5}}{\mathrm{2}}. \\ $$

Answered by floor(10²Eta[1]) last updated on 30/Aug/20

with AM−GM inequality:  ((((n^2 +1)/n)+(n/(n^2 +1)))/2)≥(√((((n^2 +1)/n))((n/(n^2 +1)))))=1  ⇒((n^2 +1)/n)+(n/(n^2 +1))≥2  the minimum value is 2.

$$\mathrm{with}\:\mathrm{AM}−\mathrm{GM}\:\mathrm{inequality}: \\ $$ $$\frac{\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}}\geqslant\sqrt{\left(\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{n}}\right)\left(\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\right)}=\mathrm{1} \\ $$ $$\Rightarrow\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\geqslant\mathrm{2} \\ $$ $$\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{is}\:\mathrm{2}. \\ $$

Commented byAina Samuel Temidayo last updated on 30/Aug/20

Thanks but the answer is 5/2. I was  also surprised when I found out it was  5/2.

$$\mathrm{Thanks}\:\mathrm{but}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{5}/\mathrm{2}.\:\mathrm{I}\:\mathrm{was} \\ $$ $$\mathrm{also}\:\mathrm{surprised}\:\mathrm{when}\:\mathrm{I}\:\mathrm{found}\:\mathrm{out}\:\mathrm{it}\:\mathrm{was} \\ $$ $$\mathrm{5}/\mathrm{2}. \\ $$

Commented byAina Samuel Temidayo last updated on 30/Aug/20

I don′t know why AM−GM doesn′t  work here.

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{why}\:\mathrm{AM}−\mathrm{GM}\:\mathrm{doesn}'\mathrm{t} \\ $$ $$\mathrm{work}\:\mathrm{here}. \\ $$

Commented bymnjuly1970 last updated on 30/Aug/20

if (min =2) then :    ((n^2 +1)/n) =(n/(n^2 +1))⇒n^4 +2n^2 +1=n^2   n^4 +n^2 +1=0⇒n∉R    solution: F(n)=(n+^([min]]) (1/n)) +((1^([max]) /(n +(1/n))))                 min(F(n))=2+(1/2) =(5/2)             ...M.N.july 1970#

$${if}\:\left({min}\:=\mathrm{2}\right)\:{then}\:: \\ $$ $$ \\ $$ $$\frac{{n}^{\mathrm{2}} +\mathrm{1}}{{n}}\:=\frac{{n}}{{n}^{\mathrm{2}} +\mathrm{1}}\Rightarrow{n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{2}} +\mathrm{1}={n}^{\mathrm{2}} \\ $$ $${n}^{\mathrm{4}} +{n}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\Rightarrow{n}\notin\mathbb{R} \\ $$ $$ \\ $$ $${solution}:\:\mathrm{F}\left({n}\right)=\left({n}\overset{\left.\left[{min}\right]\right]} {+}\frac{\mathrm{1}}{{n}}\right)\:+\left(\frac{\overset{\left[{max}\right]} {\mathrm{1}}}{{n}\:+\frac{\mathrm{1}}{{n}}}\right)\:\:\:\:\: \\ $$ $$\:\:\:\:\:\:\:\:\:\:{min}\left(\mathrm{F}\left({n}\right)\right)=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\mathrm{5}}{\mathrm{2}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:...\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}# \\ $$

Commented byAina Samuel Temidayo last updated on 30/Aug/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Answered by $@y@m last updated on 30/Aug/20

Let y=((n^2 +1)/n)+(n/(n^2 +1)),n>0  ⇒y=(((n^2 +1)^2 +n^2 )/(n(n^2 +1)))  ⇒y=((n^4 +3n^2 +1)/(n^3 +n))  (dy/dn)=(((n^3 +n)(4n^3 +6n)−(n^4 +3n^2 +1)(3n^2 +1))/((n^3 +n)^2 ))  (dy/dn)=((4n^6 +10n^4 +6n^2 −(3n^6 +10n^4 +6n^2 +1))/((n^3 +n)^2 ))  (dy/dn)=((n^6 −1)/((n^3 +n)^2 ))   ....(1)  For maxima or minima,  (dy/dn)=0  ⇒n^6 −1=0  ⇒n=1  Now, (d^2 y/dn^2 )=(((n^3 +n)^2 6n^5 −(n^6 −1).2(n^3 +n)(3n^2 +1))/((n^3 +n)^4 ))   [(d^2 y/dn_(  ) ^2 )]_(at n=1) =((4.6.1−0)/2^4 )=(3/2)>0  ∴ y is minimum at n=1  ⇒y_(min) =((1^2 +1)/1)+(1/(1^2 +1))=2+(1/2)=(5/2)

$${Let}\:{y}=\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}},\mathrm{n}>\mathrm{0} \\ $$ $$\Rightarrow{y}=\frac{\left({n}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} }{{n}\left({n}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$ $$\Rightarrow{y}=\frac{{n}^{\mathrm{4}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{1}}{{n}^{\mathrm{3}} +{n}} \\ $$ $$\frac{{dy}}{{dn}}=\frac{\left({n}^{\mathrm{3}} +{n}\right)\left(\mathrm{4}{n}^{\mathrm{3}} +\mathrm{6}{n}\right)−\left({n}^{\mathrm{4}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{3}{n}^{\mathrm{2}} +\mathrm{1}\right)}{\left({n}^{\mathrm{3}} +{n}\right)^{\mathrm{2}} } \\ $$ $$\frac{{dy}}{{dn}}=\frac{\mathrm{4}{n}^{\mathrm{6}} +\mathrm{10}{n}^{\mathrm{4}} +\mathrm{6}{n}^{\mathrm{2}} −\left(\mathrm{3}{n}^{\mathrm{6}} +\mathrm{10}{n}^{\mathrm{4}} +\mathrm{6}{n}^{\mathrm{2}} +\mathrm{1}\right)}{\left({n}^{\mathrm{3}} +{n}\right)^{\mathrm{2}} } \\ $$ $$\frac{{dy}}{{dn}}=\frac{{n}^{\mathrm{6}} −\mathrm{1}}{\left({n}^{\mathrm{3}} +{n}\right)^{\mathrm{2}} }\:\:\:....\left(\mathrm{1}\right) \\ $$ $${For}\:{maxima}\:{or}\:{minima}, \\ $$ $$\frac{{dy}}{{dn}}=\mathrm{0} \\ $$ $$\Rightarrow{n}^{\mathrm{6}} −\mathrm{1}=\mathrm{0} \\ $$ $$\Rightarrow{n}=\mathrm{1} \\ $$ $${Now},\:\frac{{d}^{\mathrm{2}} {y}}{{dn}^{\mathrm{2}} }=\frac{\left({n}^{\mathrm{3}} +{n}\right)^{\mathrm{2}} \mathrm{6}{n}^{\mathrm{5}} −\left({n}^{\mathrm{6}} −\mathrm{1}\right).\mathrm{2}\left({n}^{\mathrm{3}} +{n}\right)\left(\mathrm{3}{n}^{\mathrm{2}} +\mathrm{1}\right)}{\left({n}^{\mathrm{3}} +{n}\right)^{\mathrm{4}} } \\ $$ $$\:\left[\frac{{d}^{\mathrm{2}} {y}}{{dn}_{\:\:} ^{\mathrm{2}} }\right]_{{at}\:{n}=\mathrm{1}} =\frac{\mathrm{4}.\mathrm{6}.\mathrm{1}−\mathrm{0}}{\mathrm{2}^{\mathrm{4}} }=\frac{\mathrm{3}}{\mathrm{2}}>\mathrm{0} \\ $$ $$\therefore\:{y}\:{is}\:{minimum}\:{at}\:{n}=\mathrm{1} \\ $$ $$\Rightarrow{y}_{{min}} =\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +\mathrm{1}}=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$ $$ \\ $$

Commented byAina Samuel Temidayo last updated on 03/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com