Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110797 by ZiYangLee last updated on 30/Aug/20

If p^→ = ((a),(b) ) and q^→ = ((c),(d) ),  Prove that the area bounded by   p^→ ,q^→  and p^→ −q^(→ ) is (((ad−bc))/2).    Hints: Use cosine rule and sine rule

$$\mathrm{If}\:\overset{\rightarrow} {{p}}=\begin{pmatrix}{{a}}\\{{b}}\end{pmatrix}\:\mathrm{and}\:\overset{\rightarrow} {{q}}=\begin{pmatrix}{{c}}\\{{d}}\end{pmatrix}, \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{by}\: \\ $$$$\overset{\rightarrow} {{p}},\overset{\rightarrow} {{q}}\:\mathrm{and}\:\overset{\rightarrow} {{p}}−\overset{\rightarrow\:} {{q}}\mathrm{is}\:\frac{\left({ad}−{bc}\right)}{\mathrm{2}}. \\ $$$$ \\ $$$$\mathrm{Hints}:\:\mathrm{Use}\:\mathrm{cosine}\:\mathrm{rule}\:\mathrm{and}\:\mathrm{sine}\:\mathrm{rule} \\ $$

Commented by kaivan.ahmadi last updated on 30/Aug/20

let θ be the angel between p^→  and q^→      p^→ −q^→ = (((a−c)),((b−d)) )  ∣p^→ −q^→ ∣^2 =∣p^→ ∣^2 +∣q^→ ∣^2 −2∣p^→ ∣.∣q^→ ∣.cosθ⇒  (a−c)^2 +(b−d)^2 =a^2 +b^2 +c^2 +d^2 −2(√(a^2 +b^2 )).(√(c^2 +d^2 )).cosθ  ⇒−ac−bd=(√((a^2 +b^2 )(c^2 +d^2 ))).cosθ⇒  cosθ=((−ac−bd)/(√((a^2 +b^2 )(c^2 +d^2 ))))⇒sinθ=(√(1−(((ac−bd)^2 )/((a^2 +b^2 )(c^2 +d^2 )))))=  (√(((a^2 +b^2 )(c^2 +d^2 )−(ac−bd)^2 )/((a^2 +b^2 )(c^2 +d^2 ))))=(√((a^2 d^2 +b^2 c^2 −2abcd)/((a^2 +b^2 )(c^2 +d^2 ))))=  (√(((ad−bc)^2 )/((a^2 +b^2 )(c^2 +d^2 ))))=(((ad−bc))/(∣p^→ ∣.∣q^→ ∣))  ;[ad−bc≥0]  now we have  S=(1/2)∣p^→ ∣.∣q^→ ∣.sinθ=(1/2)∣p^→ ∣.∣q^→ ∣.(((ad−bc))/(∣p^→ ∣.∣q^→ ∣))=(1/2)(ad−bc)

$${let}\:\theta\:{be}\:{the}\:{angel}\:{between}\:\overset{\rightarrow} {{p}}\:{and}\:\overset{\rightarrow} {{q}}\: \\ $$$$ \\ $$$$\overset{\rightarrow} {{p}}−\overset{\rightarrow} {{q}}=\begin{pmatrix}{{a}−{c}}\\{{b}−{d}}\end{pmatrix} \\ $$$$\mid\overset{\rightarrow} {{p}}−\overset{\rightarrow} {{q}}\mid^{\mathrm{2}} =\mid\overset{\rightarrow} {{p}}\mid^{\mathrm{2}} +\mid\overset{\rightarrow} {{q}}\mid^{\mathrm{2}} −\mathrm{2}\mid\overset{\rightarrow} {{p}}\mid.\mid\overset{\rightarrow} {{q}}\mid.{cos}\theta\Rightarrow \\ $$$$\left({a}−{c}\right)^{\mathrm{2}} +\left({b}−{d}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} −\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }.\sqrt{{c}^{\mathrm{2}} +{d}^{\mathrm{2}} }.{cos}\theta \\ $$$$\Rightarrow−{ac}−{bd}=\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)}.{cos}\theta\Rightarrow \\ $$$${cos}\theta=\frac{−{ac}−{bd}}{\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)}}\Rightarrow{sin}\theta=\sqrt{\mathrm{1}−\frac{\left({ac}−{bd}\right)^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)}}= \\ $$$$\sqrt{\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)−\left({ac}−{bd}\right)^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)}}=\sqrt{\frac{{a}^{\mathrm{2}} {d}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{2}{abcd}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)}}= \\ $$$$\sqrt{\frac{\left({ad}−{bc}\right)^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)}}=\frac{\left({ad}−{bc}\right)}{\mid\overset{\rightarrow} {{p}}\mid.\mid\overset{\rightarrow} {{q}}\mid}\:\:;\left[{ad}−{bc}\geqslant\mathrm{0}\right] \\ $$$${now}\:{we}\:{have} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}\mid\overset{\rightarrow} {{p}}\mid.\mid\overset{\rightarrow} {{q}}\mid.{sin}\theta=\frac{\mathrm{1}}{\mathrm{2}}\mid\overset{\rightarrow} {{p}}\mid.\mid\overset{\rightarrow} {{q}}\mid.\frac{\left({ad}−{bc}\right)}{\mid\overset{\rightarrow} {{p}}\mid.\mid\overset{\rightarrow} {{q}}\mid}=\frac{\mathrm{1}}{\mathrm{2}}\left({ad}−{bc}\right) \\ $$

Commented by ZiYangLee last updated on 31/Aug/20

NICE

$$\mathrm{NICE} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com