Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 110895 by Aina Samuel Temidayo last updated on 31/Aug/20

How many ways can 2018 be  expressed as the sum of two squares?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{2018}\:\mathrm{be} \\ $$$$\mathrm{expressed}\:\mathrm{as}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{squares}? \\ $$

Answered by ajfour last updated on 31/Aug/20

43^2 +13^2 =2018

$$\mathrm{43}^{\mathrm{2}} +\mathrm{13}^{\mathrm{2}} =\mathrm{2018} \\ $$

Answered by floor(10²Eta[1]) last updated on 31/Aug/20

y=(√(2018−x^2 ))⇒x<45 and y<45  x^2 +y^2 =2018⇒(x+y)^2 =2(1009+xy)  (x+y)^2  is even ⇒(x+y) is even.  suppose x and y are even  x=2a and y=2b  (2a+2b)^2 =2(1009+(2a)(2b))  ⇒2(a^2 +b^2 )=1009  but 1009 is not even so x and y can′t be even.  ⇒ x and y are odd.  gcd(x,y)=d⇒x=ds, y=dt, gcd(s, t)=1  d^2 (s^2 +t^2 )=2018  d^2 ∣2018⇒d^2 ∈{1, 2, 1009, 2018}⇒d=1  so x and y are coprimes   x,y∈(1,3,5,7,...,43)  with that you can try to solve the problem  by testing but i will continue to think  and try to get a better way

$$\mathrm{y}=\sqrt{\mathrm{2018}−\mathrm{x}^{\mathrm{2}} }\Rightarrow\mathrm{x}<\mathrm{45}\:\mathrm{and}\:\mathrm{y}<\mathrm{45} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{2018}\Rightarrow\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1009}+\mathrm{xy}\right) \\ $$$$\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} \:\mathrm{is}\:\mathrm{even}\:\Rightarrow\left(\mathrm{x}+\mathrm{y}\right)\:\mathrm{is}\:\mathrm{even}. \\ $$$$\mathrm{suppose}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{even} \\ $$$$\mathrm{x}=\mathrm{2a}\:\mathrm{and}\:\mathrm{y}=\mathrm{2b} \\ $$$$\left(\mathrm{2a}+\mathrm{2b}\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1009}+\left(\mathrm{2a}\right)\left(\mathrm{2b}\right)\right) \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)=\mathrm{1009} \\ $$$$\mathrm{but}\:\mathrm{1009}\:\mathrm{is}\:\mathrm{not}\:\mathrm{even}\:\mathrm{so}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{even}. \\ $$$$\Rightarrow\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{odd}. \\ $$$$\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{d}\Rightarrow\mathrm{x}=\mathrm{ds},\:\mathrm{y}=\mathrm{dt},\:\mathrm{gcd}\left(\mathrm{s},\:\mathrm{t}\right)=\mathrm{1} \\ $$$$\mathrm{d}^{\mathrm{2}} \left(\mathrm{s}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} \right)=\mathrm{2018} \\ $$$$\mathrm{d}^{\mathrm{2}} \mid\mathrm{2018}\Rightarrow\mathrm{d}^{\mathrm{2}} \in\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{1009},\:\mathrm{2018}\right\}\Rightarrow\mathrm{d}=\mathrm{1} \\ $$$$\mathrm{so}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{are}\:\mathrm{coprimes}\: \\ $$$$\mathrm{x},\mathrm{y}\in\left(\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{7},...,\mathrm{43}\right) \\ $$$$\mathrm{with}\:\mathrm{that}\:\mathrm{you}\:\mathrm{can}\:\mathrm{try}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{problem} \\ $$$$\mathrm{by}\:\mathrm{testing}\:\mathrm{but}\:\mathrm{i}\:\mathrm{will}\:\mathrm{continue}\:\mathrm{to}\:\mathrm{think} \\ $$$$\mathrm{and}\:\mathrm{try}\:\mathrm{to}\:\mathrm{get}\:\mathrm{a}\:\mathrm{better}\:\mathrm{way} \\ $$$$ \\ $$

Commented by Aina Samuel Temidayo last updated on 31/Aug/20

Thanks

$$\mathrm{Thanks} \\ $$

Answered by Rasheed.Sindhi last updated on 01/Sep/20

(i) unit-digits.  (ii)squares of unit-digits.  (iii)unit-digits of squares   [((  (i)),0,1,2,3,( 4),( 5),( 6),( 7),( 8),( 9)),(( (ii)),0,1,4,9,(16),(25),(36),(49),(64),(81)),(((iii)),0,1,4,9,( 6),( 5),( 6),( 9),( 4),( 1)) ]        is sum of two square numbers.  Hence its unit-digit(8) is made up  of sum of unit-digits of squares   Only two possibilities:  4+4=8 & 9+9=18  ^• 4 is square of  unit-digits: 2 & 8  ^• 9 is square of  unit-digits: 3 & 7  Search for the numbers is  narrow enough now: Only  numbers with units 2,8,3 & 7  So finally 3 is successful  candidate. If n is one possible  candidate for required numbers  other number N is              N=(√(2018−n))  provided that 2018−n is prefect  squre.  Finally 13^2 +43^2 =2018 only  solution.

$$\left(\mathrm{i}\right)\:\mathrm{unit}-\mathrm{digits}. \\ $$$$\left(\mathrm{ii}\right)\mathrm{squares}\:\mathrm{of}\:\mathrm{unit}-\mathrm{digits}. \\ $$$$\left(\mathrm{iii}\right)\mathrm{unit}-\mathrm{digits}\:\mathrm{of}\:\mathrm{squares} \\ $$$$\begin{bmatrix}{\:\:\left(\mathrm{i}\right)}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\:\mathrm{4}}&{\:\mathrm{5}}&{\:\mathrm{6}}&{\:\mathrm{7}}&{\:\mathrm{8}}&{\:\mathrm{9}}\\{\:\left(\mathrm{ii}\right)}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{4}}&{\mathrm{9}}&{\mathrm{16}}&{\mathrm{25}}&{\mathrm{36}}&{\mathrm{49}}&{\mathrm{64}}&{\mathrm{81}}\\{\left(\mathrm{iii}\right)}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{4}}&{\mathrm{9}}&{\:\mathrm{6}}&{\:\mathrm{5}}&{\:\mathrm{6}}&{\:\mathrm{9}}&{\:\mathrm{4}}&{\:\mathrm{1}}\end{bmatrix}\: \\ $$$$ \:{is}\:{sum}\:{of}\:{two}\:{square}\:{numbers}. \\ $$$${Hence}\:{its}\:{unit}-{digit}\left(\mathrm{8}\right)\:{is}\:{made}\:{up} \\ $$$${of}\:{sum}\:{of}\:{unit}-{digits}\:{of}\:{squares} \\ $$$$\:{Only}\:{two}\:{possibilities}: \\ $$$$\mathrm{4}+\mathrm{4}=\mathrm{8}\:\&\:\mathrm{9}+\mathrm{9}=\mathrm{18} \\ $$$$\:^{\bullet} \mathrm{4}\:{is}\:{square}\:{of}\:\:{unit}-{digits}:\:\mathrm{2}\:\&\:\mathrm{8} \\ $$$$\:^{\bullet} \mathrm{9}\:{is}\:{square}\:{of}\:\:{unit}-{digits}:\:\mathrm{3}\:\&\:\mathrm{7} \\ $$$${Search}\:{for}\:{the}\:{numbers}\:{is} \\ $$$${narrow}\:{enough}\:{now}:\:{Only} \\ $$$${numbers}\:{with}\:{units}\:\mathrm{2},\mathrm{8},\mathrm{3}\:\&\:\mathrm{7} \\ $$$${So}\:{finally}\:\mathrm{3}\:{is}\:{successful} \\ $$$${candidate}.\:{If}\:{n}\:{is}\:{one}\:{possible} \\ $$$${candidate}\:{for}\:{required}\:{numbers} \\ $$$${other}\:{number}\:{N}\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{N}=\sqrt{\mathrm{2018}−{n}} \\ $$$${provided}\:{that}\:\mathrm{2018}−{n}\:{is}\:{prefect} \\ $$$${squre}. \\ $$$${Finally}\:\mathrm{13}^{\mathrm{2}} +\mathrm{43}^{\mathrm{2}} =\mathrm{2018}\:{only} \\ $$$${solution}. \\ $$

Commented by floor(10²Eta[1]) last updated on 01/Sep/20

cool!! with that and knowing that  the numbers are both odd helps a lot  because we just have to look for  the numbers(3, 7, 13, 17, 23, 27, 33, 37, 43)

$$\mathrm{cool}!!\:\mathrm{with}\:\mathrm{that}\:\mathrm{and}\:\mathrm{knowing}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{both}\:\mathrm{odd}\:\mathrm{helps}\:\mathrm{a}\:\mathrm{lot} \\ $$$$\mathrm{because}\:\mathrm{we}\:\mathrm{just}\:\mathrm{have}\:\mathrm{to}\:\mathrm{look}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{numbers}\left(\mathrm{3},\:\mathrm{7},\:\mathrm{13},\:\mathrm{17},\:\mathrm{23},\:\mathrm{27},\:\mathrm{33},\:\mathrm{37},\:\mathrm{43}\right) \\ $$$$ \\ $$

Commented by Rasheed.Sindhi last updated on 01/Sep/20

Thanks floor sir!

$$\mathbb{T}\mathrm{han}\Bbbk\mathrm{s}\:\boldsymbol{\mathrm{floor}}\:\boldsymbol{\mathrm{sir}}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com