Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 110920 by Dwaipayan Shikari last updated on 31/Aug/20

Commented by Dwaipayan Shikari last updated on 31/Aug/20

I have found this while experimenting  Σ_(n=1) ^∞ (1/(n2^n ))=(1/(1.2))+(1/(2.2^2 ))+....=−log(1−(1/2))=log(2)  ....  Σ_(n=1) ^∞ (1/(n.k^n ))=log((k/(k−1)))

$${I}\:{have}\:{found}\:{this}\:{while}\:{experimenting} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} }=\frac{\mathrm{1}}{\mathrm{1}.\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}.\mathrm{2}^{\mathrm{2}} }+....=−{log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)={log}\left(\mathrm{2}\right) \\ $$$$.... \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}.{k}^{{n}} }={log}\left(\frac{{k}}{{k}−\mathrm{1}}\right) \\ $$

Answered by mathmax by abdo last updated on 01/Sep/20

let f(x) =Σ_(n=1) ^∞  (x^n /n)  with  ∣x∣<1 ⇒f^′ (x) =Σ_(n=1) ^∞  x^(n−1)  =Σ_(n=0) ^∞  x^n   =(1/(1−x)) ⇒f(x) =−ln(1−x) +c  we have c=f(0) =0 ⇒  Σ_(n=1) ^∞  (x^n /n) =−ln(1−x) let change x by (1/x)  with ∣x∣>1 we get  Σ_(n=1) ^∞  (1/(nx^n )) =−ln(1−(1/x))=−ln(((x−1)/x)) =ln((x/(x−1)))  for x=k  integr we get   Σ_(n=1) ^∞  (1/(nk^n )) =ln((k/(k−1)))

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}}\:\:\mathrm{with}\:\:\mid\mathrm{x}\mid<\mathrm{1}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{x}^{\mathrm{n}−\mathrm{1}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=−\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\:+\mathrm{c}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{c}=\mathrm{f}\left(\mathrm{0}\right)\:=\mathrm{0}\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}}\:=−\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\:\mathrm{let}\:\mathrm{change}\:\mathrm{x}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{x}}\:\:\mathrm{with}\:\mid\mathrm{x}\mid>\mathrm{1}\:\mathrm{we}\:\mathrm{get} \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{nx}^{\mathrm{n}} }\:=−\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}\right)=−\mathrm{ln}\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}\right)\:=\mathrm{ln}\left(\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\right) \\ $$$$\mathrm{for}\:\mathrm{x}=\mathrm{k}\:\:\mathrm{integr}\:\mathrm{we}\:\mathrm{get}\: \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{nk}^{\mathrm{n}} }\:=\mathrm{ln}\left(\frac{\mathrm{k}}{\mathrm{k}−\mathrm{1}}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 01/Sep/20

Thanking you

$${Thanking}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com