Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110951 by ZiYangLee last updated on 01/Sep/20

Answered by $@y@m last updated on 01/Sep/20

Let y=kx (0<k<1)  Let z=x+(1/(y(x−y)))  ⇒ z=x+(1/(kx(x−kx)))   ⇒z =x+(1/(k(1−k)x^2 )) .....(1)  (dz/dx)=1−(2/(k(1−k)x^3 )) ....(2)  For maxima or minima,  (dz/dx)=0  1−(2/(k(1−k)x^3 )) =0  1=(2/(k(1−k)x^3 ))   x^3 =(2/(k(1−k)))    x={(2/(k(1−k)))}^(1/3) ...(3)    (d^2 z/dx^2 )=(6/(k(1−k)x^4 ))  (d^2 z/dx^2 )]_(at x={(2/(k(1−k)))}^(1/3) ) =(6/(k(1−k){(2/(k(1−k)))}^(4/3) ))    =((6{k(1−k)}^(1/3) )/2^(4/3) )>0 (∵ 0<k<1)  ∴ z is minimum when x={(2/(k(1−k)))}^(1/3)   From (1),   z =x+(1/(k(1−k)x^2 ))   ⇒z=((k(1−k)x^3 +1)/(k(1−k)x^2 ))  ⇒z_(min.) =((k(1−k)×(2/(k(1−k)))+1)/(k(1−k){(2/(k(1−k)))}^(2/3) ))  ⇒z_(min.) =((3{k(1−k)}^(1/3) )/2^(2/3) ) ....(4)  Now, let v=k(1−k)  It can be shown that v is maximum  when k=(1/2).  v_(max.) =(1/4)  From (4), it is evident that z is minimum when v is maximum.     =3.((1/2))^(2/3) ((1/2))^(2/3)     =3.((2/3))^(4/3)

$${Let}\:{y}={kx}\:\left(\mathrm{0}<{k}<\mathrm{1}\right) \\ $$$${Let}\:{z}={x}+\frac{\mathrm{1}}{{y}\left({x}−{y}\right)} \\ $$$$\Rightarrow\:{z}={x}+\frac{\mathrm{1}}{{kx}\left({x}−{kx}\right)} \\ $$$$\:\Rightarrow{z}\:={x}+\frac{\mathrm{1}}{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{2}} }\:.....\left(\mathrm{1}\right) \\ $$$$\frac{{dz}}{{dx}}=\mathrm{1}−\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{3}} }\:....\left(\mathrm{2}\right) \\ $$$${For}\:{maxima}\:{or}\:{minima}, \\ $$$$\frac{{dz}}{{dx}}=\mathrm{0} \\ $$$$\mathrm{1}−\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{3}} }\:=\mathrm{0} \\ $$$$\mathrm{1}=\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{3}} }\: \\ $$$${x}^{\mathrm{3}} =\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right)}\:\: \\ $$$${x}=\left\{\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right)}\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} ...\left(\mathrm{3}\right)\:\: \\ $$$$\frac{{d}^{\mathrm{2}} {z}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{6}}{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{4}} } \\ $$$$\left.\frac{{d}^{\mathrm{2}} {z}}{{dx}^{\mathrm{2}} }\right]_{{at}\:{x}=\left\{\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right)}\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} } =\frac{\mathrm{6}}{{k}\left(\mathrm{1}−{k}\right)\left\{\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right)}\right\}^{\frac{\mathrm{4}}{\mathrm{3}}} } \\ $$$$ \\ $$$$=\frac{\mathrm{6}\left\{{k}\left(\mathrm{1}−{k}\right)\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} }>\mathrm{0}\:\left(\because\:\mathrm{0}<{k}<\mathrm{1}\right) \\ $$$$\therefore\:{z}\:{is}\:{minimum}\:{when}\:{x}=\left\{\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right)}\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${From}\:\left(\mathrm{1}\right), \\ $$$$\:{z}\:={x}+\frac{\mathrm{1}}{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{2}} }\: \\ $$$$\Rightarrow{z}=\frac{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{3}} +\mathrm{1}}{{k}\left(\mathrm{1}−{k}\right){x}^{\mathrm{2}} } \\ $$$$\Rightarrow{z}_{{min}.} =\frac{{k}\left(\mathrm{1}−{k}\right)×\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right)}+\mathrm{1}}{{k}\left(\mathrm{1}−{k}\right)\left\{\frac{\mathrm{2}}{{k}\left(\mathrm{1}−{k}\right)}\right\}^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$$$\Rightarrow{z}_{{min}.} =\frac{\mathrm{3}\left\{{k}\left(\mathrm{1}−{k}\right)\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:....\left(\mathrm{4}\right) \\ $$$${Now},\:{let}\:{v}={k}\left(\mathrm{1}−{k}\right) \\ $$$${It}\:{can}\:{be}\:{shown}\:{that}\:{v}\:{is}\:{maximum} \\ $$$${when}\:{k}=\frac{\mathrm{1}}{\mathrm{2}}. \\ $$$${v}_{{max}.} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${From}\:\left(\mathrm{4}\right),\:{it}\:{is}\:{evident}\:{that}\:{z}\:{is}\:{minimum}\:{when}\:{v}\:{is}\:{maximum}. \\ $$$$\:\:\:=\mathrm{3}.\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$\:\:=\mathrm{3}.\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} \\ $$$$ \\ $$

Commented by ZiYangLee last updated on 01/Sep/20

Thanks Bro!

$$\mathrm{Thanks}\:\mathrm{Bro}! \\ $$

Commented by $@y@m last updated on 01/Sep/20

Is the answer correct?  I am not sure about the solution.

$${Is}\:{the}\:{answer}\:{correct}? \\ $$$${I}\:{am}\:{not}\:{sure}\:{about}\:{the}\:{solution}. \\ $$

Answered by 1549442205PVT last updated on 01/Sep/20

set x−y=m>0;P=m+y+(1/(my))  ≥3^3 (√(m.y.(1/(my))))=3  The equality ocurrs if and only if  m=y=(1/(my))⇔ { ((m^2 y=1)),((my^2 =1)) :}⇒my=1⇒m=y=1  x=y+1  Thus,P=x+(1/(y(x−y))) has smallest  value equal to 3 when x=2,y=1

$$\mathrm{set}\:\mathrm{x}−\mathrm{y}=\mathrm{m}>\mathrm{0};\mathrm{P}=\mathrm{m}+\mathrm{y}+\frac{\mathrm{1}}{\mathrm{my}} \\ $$$$\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{\mathrm{m}.\mathrm{y}.\frac{\mathrm{1}}{\mathrm{my}}}=\mathrm{3} \\ $$$$\mathrm{The}\:\mathrm{equality}\:\mathrm{ocurrs}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\mathrm{m}=\mathrm{y}=\frac{\mathrm{1}}{\mathrm{my}}\Leftrightarrow\begin{cases}{\mathrm{m}^{\mathrm{2}} \mathrm{y}=\mathrm{1}}\\{\mathrm{my}^{\mathrm{2}} =\mathrm{1}}\end{cases}\Rightarrow\mathrm{my}=\mathrm{1}\Rightarrow\mathrm{m}=\mathrm{y}=\mathrm{1} \\ $$$$\mathrm{x}=\mathrm{y}+\mathrm{1} \\ $$$$\mathrm{Thus},\mathrm{P}=\mathrm{x}+\frac{\mathrm{1}}{\mathrm{y}\left(\mathrm{x}−\mathrm{y}\right)}\:\mathrm{has}\:\mathrm{smallest} \\ $$$$\mathrm{value}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{3}\:\mathrm{when}\:\mathrm{x}=\mathrm{2},\mathrm{y}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com