Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110964 by mathdave last updated on 01/Sep/20

solve   ∫_0 ^1 ((x^2 lnx)/((1+x^2 )^3 ))dx

solve01x2lnx(1+x2)3dx

Answered by mathdave last updated on 01/Sep/20

enjoy my solution   let x=tany,dx=(1+tan^2 y)dy  I=∫_0 ^(π/4) ((tanyln(tany))/((1+tan^2 y)^3 ))×(1+tan^2 y)dy  I=∫_0 ^(π/4) ((tan^2 yln(tany))/(sec^4 y))dy=∫_0 ^(π/4) ((tan^2 yln(tany)cos^4 y)/1)dy  I=∫_0 ^(π/4) (sinycosy)^2 ln(tany)dy  but sinycosy=((sin2y)/2)  I=(1/4)∫_0 ^(π/4) sin^2 2yln(tany)dy  but cos4y=1−2sin^2 2y,sin^2 2y=((1−cos4y)/2)  I=(1/8)∫_0 ^(π/4) (1−cos4y)ln(tany)dy  I=(1/8)∫_0 ^(π/4) ln(tany)−(1/8)∫_0 ^(π/4) cos4yln(tany)dy  let  B=∫_0 ^(π/4) cos4yln(tany)dy  using IBP    but let   ∫dv=∫cos4ydy,v=((sin4y)/4),u=ln(tany),du=((sec^2 y)/(tany))=(1/(sinycosy))=(2/(sin2y))  B=(1/4)[sin4yln(tany)]_0 ^(π/4) −(1/4)∫_0 ^(π/4) ((2sin4y)/(sin2y))dy  B=−(1/2)∫_0 ^(π/4) ((sin4y)/(sin2y))dy    (let 2y=x,dy=(dx/2))  =−(1/4)∫_0 ^(π/2) ((sin2x)/(sinx))dx=−(1/4)∫_0 ^(π/2) ((2sinxcosx)/(sinx))dx  B=−(1/2)∫_0 ^(π/2) cosxdx=−(1/2)[sinx]_0 ^(π/2) =−(1/2)  ∵B=∫_0 ^(π/4) cos4yln(tany)dy=−(1/2).........(1)  then letA=∫_0 ^(π/4) ln(tany)dy  let x=tany,dy=(dx/(1+x^2 ))  A=∫_0 ^1 ((lnx)/(1+x^2 ))dx    (using series summation)  A=∫_0 ^1 (−1)^n Σ_(n=0) ^∞ x^(2n) lnxdx=(−1)^n Σ_(n=0) ^∞ ∫_0 ^1 x^(2n) .x^a dx∣_(a=0)   (∂/∂a)∣_(a=0) A(a)=(−1)^n Σ_(n=0) ^∞ (∂/∂a)∫_0 ^1 x^(2n+a) dx  (∂/∂a)∣_(a=0) A(a)=(−1)^n (∂/∂a)Σ_(n=0) ^∞ [(1/((2n+a+1)))]  A(0)=A=−Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))=−G(catalan constant).....(2)  but I=(1/8)A−(1/8)B=[−(G/8)−(1/8)(−(1/2))]=[(1/(16))−(1/8)G]  ∵∫_0 ^1 ((x^2 lnx)/((1+x^2 )^3 ))dx=[(1/(16))−(1/8)G]  solution by mathdave(1/09/2020)

enjoymysolutionletx=tany,dx=(1+tan2y)dyI=0π4tanyln(tany)(1+tan2y)3×(1+tan2y)dyI=0π4tan2yln(tany)sec4ydy=0π4tan2yln(tany)cos4y1dyI=0π4(sinycosy)2ln(tany)dybutsinycosy=sin2y2I=140π4sin22yln(tany)dybutcos4y=12sin22y,sin22y=1cos4y2I=180π4(1cos4y)ln(tany)dyI=180π4ln(tany)180π4cos4yln(tany)dyletB=0π4cos4yln(tany)dyusingIBPbutletdv=cos4ydy,v=sin4y4,u=ln(tany),du=sec2ytany=1sinycosy=2sin2yB=14[sin4yln(tany)]0π4140π42sin4ysin2ydyB=120π4sin4ysin2ydy(let2y=x,dy=dx2)=140π2sin2xsinxdx=140π22sinxcosxsinxdxB=120π2cosxdx=12[sinx]0π2=12B=0π4cos4yln(tany)dy=12.........(1)thenletA=0π4ln(tany)dyletx=tany,dy=dx1+x2A=01lnx1+x2dx(usingseriessummation)A=01(1)nn=0x2nlnxdx=(1)nn=001x2n.xadxa=0aa=0A(a)=(1)nn=0a01x2n+adxaa=0A(a)=(1)nan=0[1(2n+a+1)]A(0)=A=n=0(1)n(2n+1)2=G(catalanconstant).....(2)butI=18A18B=[G818(12)]=[11618G]01x2lnx(1+x2)3dx=[11618G]solutionbymathdave(1/09/2020)

Commented by mnjuly1970 last updated on 01/Sep/20

okay..

okay..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com