All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 110964 by mathdave last updated on 01/Sep/20
solve∫01x2lnx(1+x2)3dx
Answered by mathdave last updated on 01/Sep/20
enjoymysolutionletx=tany,dx=(1+tan2y)dyI=∫0π4tanyln(tany)(1+tan2y)3×(1+tan2y)dyI=∫0π4tan2yln(tany)sec4ydy=∫0π4tan2yln(tany)cos4y1dyI=∫0π4(sinycosy)2ln(tany)dybutsinycosy=sin2y2I=14∫0π4sin22yln(tany)dybutcos4y=1−2sin22y,sin22y=1−cos4y2I=18∫0π4(1−cos4y)ln(tany)dyI=18∫0π4ln(tany)−18∫0π4cos4yln(tany)dyletB=∫0π4cos4yln(tany)dyusingIBPbutlet∫dv=∫cos4ydy,v=sin4y4,u=ln(tany),du=sec2ytany=1sinycosy=2sin2yB=14[sin4yln(tany)]0π4−14∫0π42sin4ysin2ydyB=−12∫0π4sin4ysin2ydy(let2y=x,dy=dx2)=−14∫0π2sin2xsinxdx=−14∫0π22sinxcosxsinxdxB=−12∫0π2cosxdx=−12[sinx]0π2=−12∵B=∫0π4cos4yln(tany)dy=−12.........(1)thenletA=∫0π4ln(tany)dyletx=tany,dy=dx1+x2A=∫01lnx1+x2dx(usingseriessummation)A=∫01(−1)n∑∞n=0x2nlnxdx=(−1)n∑∞n=0∫01x2n.xadx∣a=0∂∂a∣a=0A(a)=(−1)n∑∞n=0∂∂a∫01x2n+adx∂∂a∣a=0A(a)=(−1)n∂∂a∑∞n=0[1(2n+a+1)]A(0)=A=−∑∞n=0(−1)n(2n+1)2=−G(catalanconstant).....(2)butI=18A−18B=[−G8−18(−12)]=[116−18G]∵∫01x2lnx(1+x2)3dx=[116−18G]solutionbymathdave(1/09/2020)
Commented by mnjuly1970 last updated on 01/Sep/20
okay..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com