Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110970 by khaki last updated on 01/Sep/20

Commented by khaki last updated on 01/Sep/20

please solve this queztion

$$\mathrm{please}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{queztion} \\ $$

Answered by mr W last updated on 01/Sep/20

∫((ax+b)/(ax^2 +bx+c))dx  =(1/2)∫((2ax+b+b)/(ax^2 +bx+c))dx  =(1/2)[∫((2ax+b)/(ax^2 +bx+c))dx+∫(b/(ax^2 +bx+c))dx]  =(1/2)∫((d(ax^2 +bx+c))/(ax^2 +bx+c))+(1/2)∫(b/(ax^2 +bx+c))dx  =(1/2)ln ∣ax^2 +bx+c∣+(b/2)∫(1/(ax^2 +bx+c))dx  =....

$$\int\frac{{ax}+{b}}{{ax}^{\mathrm{2}} +{bx}+{c}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{ax}+{b}+{b}}{{ax}^{\mathrm{2}} +{bx}+{c}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\int\frac{\mathrm{2}{ax}+{b}}{{ax}^{\mathrm{2}} +{bx}+{c}}{dx}+\int\frac{{b}}{{ax}^{\mathrm{2}} +{bx}+{c}}{dx}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({ax}^{\mathrm{2}} +{bx}+{c}\right)}{{ax}^{\mathrm{2}} +{bx}+{c}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{b}}{{ax}^{\mathrm{2}} +{bx}+{c}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid{ax}^{\mathrm{2}} +{bx}+{c}\mid+\frac{{b}}{\mathrm{2}}\int\frac{\mathrm{1}}{{ax}^{\mathrm{2}} +{bx}+{c}}{dx} \\ $$$$=.... \\ $$

Commented by mr W last updated on 01/Sep/20

Commented by Her_Majesty last updated on 01/Sep/20

what if b^2 =4ac?

$${what}\:{if}\:{b}^{\mathrm{2}} =\mathrm{4}{ac}? \\ $$

Commented by malwan last updated on 01/Sep/20

if b^2 =4ac ⇒Δ=0  ⇒x=((−b)/(2a))    ∫(( dx)/(ax^2 +bx+c))=∫(( dx)/((x+(b/(2a)))^2 ))  =∫(x+(b/(2a)))^(−2)  d(x+(b/(2a)))=((−1)/(x+(b/(2a))))

$${if}\:{b}^{\mathrm{2}} =\mathrm{4}{ac}\:\Rightarrow\Delta=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{−{b}}{\mathrm{2}{a}}\:\: \\ $$$$\int\frac{\:{dx}}{{ax}^{\mathrm{2}} +{bx}+{c}}=\int\frac{\:{dx}}{\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} } \\ $$$$=\int\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)^{−\mathrm{2}} \:{d}\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)=\frac{−\mathrm{1}}{{x}+\frac{{b}}{\mathrm{2}{a}}} \\ $$

Answered by malwan last updated on 01/Sep/20

∫(( ax + b)/(ax^2  + bx + c))dx  = ∫(( ax +(1/2)b)/(ax^2  + bx + c))dx − (b/2)∫(( dx)/(ax^2  + bx + c))  = (1/2)ln∣ax^2 +bx+c∣−(b/2)I  I=∫(( dx)/(a[x^2 +(b/a)x+(c/a)]))  =(1/a)∫(( dx)/([(x+(b/(2a)))^2  + ((c/a)−(b^2 /(4a^2 )))]))  =(1/a)∫(( dx)/([(((2ax+b)/(2a)))^2 +((4ac−b^2 )/(4a^2 ))]))  =(1/a) (1/((4ac−b^2 )/(4a^2 ))) ∫(( dx)/((((2ax+b)^2 )/(4a^2 ))/((4ax−b^2 )/(4a^2 )) +1 ))  =((4a)/(4ac−b^2 )) ∫(( dx)/((((2ac+b)/( (√(4ac−b^2 )))))^2  + 1))  t=((2ac)/( (√(4ac−b^2 )))) ⇒dt(√(4ac−b^2 ))=2adx  dx=((√(4ac−b^2 ))/(2a))  ∴ I =((4a)/(4ac−b^2 )) ∫((((√(4ac−b^2 ))/(2a)) dt)/(t^2 +1))  =(2/( (√(4ac−b^2 )))) tan^(−1)  t + C  I= (2/( (√(4ac−b^2 )))) tan^(−1) (((2ax + b)/( (√(4ac −b^2 ))))) + C

$$\int\frac{\:{ax}\:+\:{b}}{{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}}{dx} \\ $$$$=\:\int\frac{\:{ax}\:+\frac{\mathrm{1}}{\mathrm{2}}{b}}{{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}}{dx}\:−\:\frac{{b}}{\mathrm{2}}\int\frac{\:{dx}}{{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{ax}^{\mathrm{2}} +{bx}+{c}\mid−\frac{{b}}{\mathrm{2}}{I} \\ $$$${I}=\int\frac{\:{dx}}{{a}\left[{x}^{\mathrm{2}} +\frac{{b}}{{a}}{x}+\frac{{c}}{{a}}\right]} \\ $$$$=\frac{\mathrm{1}}{{a}}\int\frac{\:{dx}}{\left[\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} \:+\:\left(\frac{{c}}{{a}}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right)\right]} \\ $$$$=\frac{\mathrm{1}}{{a}}\int\frac{\:{dx}}{\left[\left(\frac{\mathrm{2}{ax}+{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} +\frac{\mathrm{4}{ac}−{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right]} \\ $$$$=\frac{\mathrm{1}}{{a}}\:\frac{\mathrm{1}}{\frac{\mathrm{4}{ac}−{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }}\:\int\frac{\:{dx}}{\frac{\left(\mathrm{2}{ax}+{b}\right)^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }/\frac{\mathrm{4}{ax}−{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\:+\mathrm{1}\:} \\ $$$$=\frac{\mathrm{4}{a}}{\mathrm{4}{ac}−{b}^{\mathrm{2}} }\:\int\frac{\:{dx}}{\left(\frac{\mathrm{2}{ac}+{b}}{\:\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}\right)^{\mathrm{2}} \:+\:\mathrm{1}} \\ $$$${t}=\frac{\mathrm{2}{ac}}{\:\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}\:\Rightarrow{dt}\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }=\mathrm{2}{adx} \\ $$$${dx}=\frac{\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}{\mathrm{2}{a}} \\ $$$$\therefore\:{I}\:=\frac{\mathrm{4}{a}}{\mathrm{4}{ac}−{b}^{\mathrm{2}} }\:\int\frac{\frac{\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}{\mathrm{2}{a}}\:{dt}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}\:{tan}^{−\mathrm{1}} \:{t}\:+\:{C} \\ $$$${I}=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}{ac}−{b}^{\mathrm{2}} }}\:{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{ax}\:+\:{b}}{\:\sqrt{\mathrm{4}{ac}\:−{b}^{\mathrm{2}} }}\right)\:+\:{C} \\ $$

Commented by mr W last updated on 01/Sep/20

i think  = (1/2)ln∣ax^2 +bx+c∣+(b/2)I

$${i}\:{think} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{ax}^{\mathrm{2}} +{bx}+{c}\mid+\frac{{b}}{\mathrm{2}}{I} \\ $$

Commented by malwan last updated on 01/Sep/20

yes Sir

$${yes}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com