Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 110993 by ajfour last updated on 01/Sep/20

Commented by ajfour last updated on 01/Sep/20

Assume all surfaces frictionless.  Find acceleration of center of mass  of the system.

$${Assume}\:{all}\:{surfaces}\:{frictionless}. \\ $$$${Find}\:{acceleration}\:{of}\:{center}\:{of}\:{mass} \\ $$$${of}\:{the}\:{system}. \\ $$

Answered by mr W last updated on 01/Sep/20

Commented by mr W last updated on 01/Sep/20

N sin θ=MA  N+mA sin θ=mg cos θ  mg sin θ+mA cos θ=ma  ⇒g sin θ+A cos θ=a  A((M/m)+sin^2  θ)=g sin θ cos θ  ⇒A=((g sin θ cos θ)/((M/m)+sin^2  θ))=(dx_M ^2 /dt^2 )  ⇒a=((((M/m)+1)g sin θ)/((M/m)+sin^2  θ))=−(ds^2 /dt^2 )    x_S =(1/(M+m))[Mx_M +m(x_M +s cos θ)]  =(1/(M+m))[(M+m)x_M +ms cos θ]  y_S =(m/(M+m))s sin θ    ⇒a_(S,x) =(d^2 x_M /dt^2 )=(1/(M+m))[(M+m)A−ma cos θ)  =(1/(M+m)){(((M+m)g sin θ cos θ)/((M/m)+sin^2  θ))−((m((M/m)+1)g sin θ cos θ)/((M/m)+sin^2  θ))}  =0 (as expected)  ⇒a_(S,y) =−(d^2 y_S /dt^2 )=(m/(M+m))a sin θ=((g sin^2  θ)/((M/m)+sin^2  θ))

$${N}\:\mathrm{sin}\:\theta={MA} \\ $$$${N}+{mA}\:\mathrm{sin}\:\theta={mg}\:\mathrm{cos}\:\theta \\ $$$${mg}\:\mathrm{sin}\:\theta+{mA}\:\mathrm{cos}\:\theta={ma} \\ $$$$\Rightarrow{g}\:\mathrm{sin}\:\theta+{A}\:\mathrm{cos}\:\theta={a} \\ $$$${A}\left(\frac{{M}}{{m}}+\mathrm{sin}^{\mathrm{2}} \:\theta\right)={g}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{A}=\frac{{g}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\frac{{M}}{{m}}+\mathrm{sin}^{\mathrm{2}} \:\theta}=\frac{{dx}_{{M}} ^{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$$\Rightarrow{a}=\frac{\left(\frac{{M}}{{m}}+\mathrm{1}\right){g}\:\mathrm{sin}\:\theta}{\frac{{M}}{{m}}+\mathrm{sin}^{\mathrm{2}} \:\theta}=−\frac{{ds}^{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$$ \\ $$$${x}_{{S}} =\frac{\mathrm{1}}{{M}+{m}}\left[{Mx}_{{M}} +{m}\left({x}_{{M}} +{s}\:\mathrm{cos}\:\theta\right)\right] \\ $$$$=\frac{\mathrm{1}}{{M}+{m}}\left[\left({M}+{m}\right){x}_{{M}} +{ms}\:\mathrm{cos}\:\theta\right] \\ $$$${y}_{{S}} =\frac{{m}}{{M}+{m}}{s}\:\mathrm{sin}\:\theta \\ $$$$ \\ $$$$\Rightarrow{a}_{{S},{x}} =\frac{{d}^{\mathrm{2}} {x}_{{M}} }{{dt}^{\mathrm{2}} }=\frac{\mathrm{1}}{{M}+{m}}\left[\left({M}+{m}\right){A}−{ma}\:\mathrm{cos}\:\theta\right) \\ $$$$=\frac{\mathrm{1}}{{M}+{m}}\left\{\frac{\left({M}+{m}\right){g}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\frac{{M}}{{m}}+\mathrm{sin}^{\mathrm{2}} \:\theta}−\frac{{m}\left(\frac{{M}}{{m}}+\mathrm{1}\right){g}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\frac{{M}}{{m}}+\mathrm{sin}^{\mathrm{2}} \:\theta}\right\} \\ $$$$=\mathrm{0}\:\left({as}\:{expected}\right) \\ $$$$\Rightarrow{a}_{{S},{y}} =−\frac{{d}^{\mathrm{2}} {y}_{{S}} }{{dt}^{\mathrm{2}} }=\frac{{m}}{{M}+{m}}{a}\:\mathrm{sin}\:\theta=\frac{{g}\:\mathrm{sin}^{\mathrm{2}} \:\theta}{\frac{{M}}{{m}}+\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$

Commented by ajfour last updated on 01/Sep/20

Beautiful Sir, understood; THanKS!

$${Beautiful}\:{Sir},\:{understood};\:\mathcal{TH}{an}\mathcal{KS}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com