Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 111017 by bemath last updated on 01/Sep/20

    (√(bemath))  ∫ (dx/( ((4−((3−2x))^(1/(3 )) ))^(1/(4 )) )) ?

bemathdx432x34?

Answered by john santu last updated on 01/Sep/20

by letting ν = ((4−((3−2x))^(1/(3 )) ))^(1/(4 ))   ⇒ν^4 =4−((3−2x))^(1/(3 ))  ⇒3−2x = (4−ν^4 )^3   2x = 3−(4−ν^4 )^3   ⇒2dx = −3.(−4ν^3 )(4−ν^4 )^2  dν  I=∫ ((12ν^3 (4−ν^4 )^2 )/(2ν)) dν  I=6∫ν^2 (16−8ν^4 +ν^8 ) dν  I=6∫(16ν^2 −8ν^6 +ν^(10) )dν  I=6(((16ν^3 )/3)−(8/7)ν^7 +(1/(11))ν^(11) )+c  I=6(((4−((3−2x))^(1/(3 )) )^3 ))^(1/(4 ))  (((16)/3)−(8/7)(4−((3−2x))^(1/(3 )) )+(1/(11))(4−((3−2x))^(1/(3 )) )^2  )+ c

bylettingν=432x34ν4=432x332x=(4ν4)32x=3(4ν4)32dx=3.(4ν3)(4ν4)2dνI=12ν3(4ν4)22νdνI=6ν2(168ν4+ν8)dνI=6(16ν28ν6+ν10)dνI=6(16ν3387ν7+111ν11)+cI=6(432x3)34(16387(432x3)+111(432x3)2)+c

Answered by Dwaipayan Shikari last updated on 01/Sep/20

∫(dx/( ((4−a))^(1/4) ))                        3−2x=a^3     −2=3a^2 (da/dx)          −(1/2)∫((3a^2 da)/((4−a)^(1/4) ))           (4−a=t^4 ⇒−1=4t^3 (dt/da)  (3/2)∫((a^2 4t^3 dt)/t)=6∫t^2 (4−t^4 )^2 dt=6∫16t^2 −8t^6 +t^(10)   =32t^3 −((48)/7)t^7 +(6/(11))t^(11) +C  =32(4−a)^(3/4) −((48)/7)(4−a)^(7/4) +(6/(11))(4−a)^((11)/4) +C  =32(4−((3−2x))^(1/3) )^(3/4) −((48)/7)(4−((3−2x))^(1/3) )^(7/4) +(6/(11))(4−((3−2x))^(1/3) )^((11)/4) +C

dx4a432x=a32=3a2dadx123a2da(4a)14(4a=t41=4t3dtda32a24t3dtt=6t2(4t4)2dt=616t28t6+t10=32t3487t7+611t11+C=32(4a)34487(4a)74+611(4a)114+C=32(432x3)34487(432x3)74+611(432x3)114+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com