All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 111017 by bemath last updated on 01/Sep/20
bemath∫dx4−3−2x34?
Answered by john santu last updated on 01/Sep/20
bylettingν=4−3−2x34⇒ν4=4−3−2x3⇒3−2x=(4−ν4)32x=3−(4−ν4)3⇒2dx=−3.(−4ν3)(4−ν4)2dνI=∫12ν3(4−ν4)22νdνI=6∫ν2(16−8ν4+ν8)dνI=6∫(16ν2−8ν6+ν10)dνI=6(16ν33−87ν7+111ν11)+cI=6(4−3−2x3)34(163−87(4−3−2x3)+111(4−3−2x3)2)+c
Answered by Dwaipayan Shikari last updated on 01/Sep/20
∫dx4−a43−2x=a3−2=3a2dadx−12∫3a2da(4−a)14(4−a=t4⇒−1=4t3dtda32∫a24t3dtt=6∫t2(4−t4)2dt=6∫16t2−8t6+t10=32t3−487t7+611t11+C=32(4−a)34−487(4−a)74+611(4−a)114+C=32(4−3−2x3)34−487(4−3−2x3)74+611(4−3−2x3)114+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com