All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 111023 by mohammad17 last updated on 01/Sep/20
∫sin(x)1+x2dx
Commented by mohammad17 last updated on 01/Sep/20
helpmesir
Answered by mathdave last updated on 02/Sep/20
solutionseriesformof11+x2=(−1)n∑∞n=0x2nI=∫sinx1+x2dx=(−1)n∑∞n=0∫x2nsinxdxusingIBPletu=x2n,du=2x2nand∫dv=∫sinxdx,v=−cosxbut∫udv=uv−∫vduI=(−1)n∑∞n=0[(−x2ncosx+2∫x2ncosxdx]I=−(−1)n∑∞n=0x2ncosx+2(−1)n∑∞n=0∫x2ncosxdxI=−(−1)n∑∞n=0x2ncosx+2(−1)n∑∞n=0[x2nsinx−2∫x2nsinxdx]I=−(−1)n∑∞n=0x2ncosx+2(−1)n∑∞n=0x2nsinx−4II+4I=(−1)n∑∞n=0x2n[2sinx−cosx]∵I=∫sinx1+x2dx=(−1)n∑∞n=0x2n5[2sinx−cosx]mathdave(02/09/2020)
Commented by mohammad17 last updated on 02/Sep/20
youareanawesomepersonthankyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com