All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 111024 by mathmax by abdo last updated on 01/Sep/20
calculate∫0∞x2lnx(1+x2)3dx
Answered by mathdave last updated on 01/Sep/20
solutionletI=∫0∞x2lnx(1+x2)3dxthen∂∂a∣a=0I(a)=14∂∂a∫0∞x12+a(1+x)3dxI1(a)=14∂∂aβ(32+a,32−a)=14∂∂a[Γ(32+a)Γ(32−a)Γ(3)]I′(0)=14∙Γ(32)Γ(32)Γ(3)[ψ(32)−ψ(32)]=0∫0∞x2lnx(1+x2)3dx=0mathdave(01/09/2020)
Commented by abdomsup last updated on 01/Sep/20
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com