Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 111024 by mathmax by abdo last updated on 01/Sep/20

calculate ∫_0 ^∞  ((x^2 lnx)/((1+x^2 )^3 ))dx

calculate0x2lnx(1+x2)3dx

Answered by mathdave last updated on 01/Sep/20

solution  let I=∫_0 ^∞ ((x^2 lnx)/((1+x^2 )^3 ))dx  then  (∂/∂a)∣_(a=0) I(a)=(1/4)(∂/∂a)∫_0 ^∞ (x^((1/2)+a) /((1+x)^3 ))dx  I^1 (a)=(1/4)(∂/∂a)β((3/2)+a,(3/2)−a)=(1/4)(∂/∂a)[((Γ((3/2)+a)Γ((3/2)−a))/(Γ(3)))]  I^′ (0)=(1/4)•((Γ((3/2))Γ((3/2)))/(Γ(3)))[ψ((3/2))−ψ((3/2))]=0  ∫_0 ^∞ ((x^2 lnx)/((1+x^2 )^3 ))dx=0  mathdave(01/09/2020)

solutionletI=0x2lnx(1+x2)3dxthenaa=0I(a)=14a0x12+a(1+x)3dxI1(a)=14aβ(32+a,32a)=14a[Γ(32+a)Γ(32a)Γ(3)]I(0)=14Γ(32)Γ(32)Γ(3)[ψ(32)ψ(32)]=00x2lnx(1+x2)3dx=0mathdave(01/09/2020)

Commented by abdomsup last updated on 01/Sep/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com