Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111035 by ZiYangLee last updated on 01/Sep/20

If b∈Z^+  ∀ both the roots of equation  x^2 −bx+132=0 are integers.  Find  (1)the largest possible value of b  (2)the smallest possible value of b.

$$\mathrm{If}\:{b}\in\mathbb{Z}^{+} \:\forall\:\mathrm{both}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$${x}^{\mathrm{2}} −{bx}+\mathrm{132}=\mathrm{0}\:\mathrm{are}\:\mathrm{integers}. \\ $$$$\mathrm{Find} \\ $$$$\left(\mathrm{1}\right)\mathrm{the}\:\mathrm{largest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{b} \\ $$$$\left(\mathrm{2}\right)\mathrm{the}\:\mathrm{smallest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{b}. \\ $$

Answered by 1549442205PVT last updated on 02/Sep/20

x^2 −bx+132=(x−m)(x−n)  ⇔ { ((m+n=b>0)),((mn=132=3.11.4)) :}  WLOG suppose m≤n  ⇒m∈{1,2,3,4,6,11}  i)m=1⇒n=132⇒m+n=133  ii)m=2⇒n=66⇒m+n=68  iii)m=3⇒n=44⇒m+n=47  iv)m=4⇒n=33⇒m+n=37  v)m=6⇒n=22⇒m+n=28  vi)m=11⇒n=12⇒m+n=23  Thus,b=m+n get smallest value  equal to 23 so that the given eq.  x^2 −bx+132 has both its roots are  integers

$$\mathrm{x}^{\mathrm{2}} −\mathrm{bx}+\mathrm{132}=\left(\mathrm{x}−\mathrm{m}\right)\left(\mathrm{x}−\mathrm{n}\right) \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{m}+\mathrm{n}=\mathrm{b}>\mathrm{0}}\\{\mathrm{mn}=\mathrm{132}=\mathrm{3}.\mathrm{11}.\mathrm{4}}\end{cases} \\ $$$$\mathrm{WLOG}\:\mathrm{suppose}\:\mathrm{m}\leqslant\mathrm{n} \\ $$$$\Rightarrow\mathrm{m}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{11}\right\} \\ $$$$\left.\mathrm{i}\right)\mathrm{m}=\mathrm{1}\Rightarrow\mathrm{n}=\mathrm{132}\Rightarrow\mathrm{m}+\mathrm{n}=\mathrm{133} \\ $$$$\left.\mathrm{ii}\right)\mathrm{m}=\mathrm{2}\Rightarrow\mathrm{n}=\mathrm{66}\Rightarrow\mathrm{m}+\mathrm{n}=\mathrm{68} \\ $$$$\left.\mathrm{iii}\right)\mathrm{m}=\mathrm{3}\Rightarrow\mathrm{n}=\mathrm{44}\Rightarrow\mathrm{m}+\mathrm{n}=\mathrm{47} \\ $$$$\left.\mathrm{iv}\right)\mathrm{m}=\mathrm{4}\Rightarrow\mathrm{n}=\mathrm{33}\Rightarrow\mathrm{m}+\mathrm{n}=\mathrm{37} \\ $$$$\left.\mathrm{v}\right)\mathrm{m}=\mathrm{6}\Rightarrow\mathrm{n}=\mathrm{22}\Rightarrow\mathrm{m}+\mathrm{n}=\mathrm{28} \\ $$$$\left.\mathrm{vi}\right)\mathrm{m}=\mathrm{11}\Rightarrow\mathrm{n}=\mathrm{12}\Rightarrow\mathrm{m}+\mathrm{n}=\mathrm{23} \\ $$$$\mathrm{Thus},\mathrm{b}=\mathrm{m}+\mathrm{n}\:\mathrm{get}\:\mathrm{smallest}\:\mathrm{value} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{23}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{given}\:\mathrm{eq}. \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{bx}+\mathrm{132}\:\mathrm{has}\:\mathrm{both}\:\mathrm{its}\:\mathrm{roots}\:\mathrm{are} \\ $$$$\mathrm{integers} \\ $$

Commented by 1549442205PVT last updated on 02/Sep/20

Since m+n=b>0,but mn=132 ,so  both are positive,Sir!

$$\mathrm{Since}\:\mathrm{m}+\mathrm{n}=\mathrm{b}>\mathrm{0},\mathrm{but}\:\mathrm{mn}=\mathrm{132}\:,\mathrm{so} \\ $$$$\mathrm{both}\:\mathrm{are}\:\mathrm{positive},\mathrm{Sir}! \\ $$

Commented by Her_Majesty last updated on 01/Sep/20

m>0∧n>0 or m<0∧n<0 ⇒ check your  answer. the method is ok

$${m}>\mathrm{0}\wedge{n}>\mathrm{0}\:{or}\:{m}<\mathrm{0}\wedge{n}<\mathrm{0}\:\Rightarrow\:{check}\:{your} \\ $$$${answer}.\:{the}\:{method}\:{is}\:{ok} \\ $$

Commented by Her_Majesty last updated on 02/Sep/20

sorry I missed that b∈Z^+ , you are right

$${sorry}\:{I}\:{missed}\:{that}\:{b}\in\mathbb{Z}^{+} ,\:{you}\:{are}\:{right} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com