Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 111080 by bemath last updated on 02/Sep/20

  (√(bemath))  (1)Σ_(k=50) ^(100)  (1/(k(151−k))) ?  (2) without L′Hopital and series   find the value of lim_(x→0)  ((xcos x−sin x)/(x^2 sin x))

$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\left(\mathrm{1}\right)\underset{\mathrm{k}=\mathrm{50}} {\overset{\mathrm{100}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{151}−\mathrm{k}\right)}\:? \\ $$$$\left(\mathrm{2}\right)\:\mathrm{without}\:\mathrm{L}'\mathrm{Hopital}\:\mathrm{and}\:\mathrm{series}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{xcos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:\mathrm{x}} \\ $$

Answered by john santu last updated on 02/Sep/20

(2) lim_(x→0)  ((xcos x−sin x+x−x)/(x^2 sin x)) =  lim_(x→0)  ((x(cos x−1))/(x^2 sin x))+lim_(x→0)  ((x−sin x)/(x^2 sin x)) =  the first term  L_1 = lim_(x→0)  ((x(cos x−1))/(x^2 sin x))=lim_(x→0)  ((cos x−1)/(xsin x))  L_1 =lim_(x→0)  ((−2sin^2 ((x/2)))/(xsin x))=−2×(1/4)=−(1/2)  the second term   L_2 = lim_(x→0)  ((x−sin x)/(x^2 sin x)) = lim_(x→0)  ((x−sin x)/x^3 ) .(x/(sin x))  [ note that lim_(x→0)  (x/(sin x)) = 1 ]  L_2 =lim_(x→0)  ((x−sin x)/x^3 ) = (1/6)  [ we can find it by letting x = 2t ]  Hence , we conclude that   lim_(x→0)  ((xcos x−sin x)/(x^2 sin x)) = −(1/2)+(1/6)=−(1/3)

$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\mathrm{cos}\:{x}−\mathrm{sin}\:{x}+{x}−{x}}{{x}^{\mathrm{2}} \mathrm{sin}\:{x}}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\left(\mathrm{cos}\:{x}−\mathrm{1}\right)}{{x}^{\mathrm{2}} \mathrm{sin}\:{x}}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} \mathrm{sin}\:{x}}\:= \\ $$$${the}\:{first}\:{term} \\ $$$${L}_{\mathrm{1}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\left(\mathrm{cos}\:{x}−\mathrm{1}\right)}{{x}^{\mathrm{2}} \mathrm{sin}\:{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}−\mathrm{1}}{{x}\mathrm{sin}\:{x}} \\ $$$${L}_{\mathrm{1}} =\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}\mathrm{sin}\:{x}}=−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${the}\:{second}\:{term}\: \\ $$$${L}_{\mathrm{2}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} \mathrm{sin}\:{x}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{3}} }\:.\frac{{x}}{\mathrm{sin}\:{x}} \\ $$$$\left[\:{note}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mathrm{sin}\:{x}}\:=\:\mathrm{1}\:\right] \\ $$$${L}_{\mathrm{2}} =\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\left[\:{we}\:{can}\:{find}\:{it}\:{by}\:{letting}\:{x}\:=\:\mathrm{2}{t}\:\right] \\ $$$${Hence}\:,\:{we}\:{conclude}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} \mathrm{sin}\:{x}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Commented by bemath last updated on 02/Sep/20

greatt....

$$\mathrm{greatt}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com