Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111157 by mathdave last updated on 02/Sep/20

question proposed MN july 1970  ∫_0 ^(π/4) tanx(ln(1+tan^2 x))dx  my solution followed

$${question}\:{proposed}\:{MN}\:{july}\:\mathrm{1970} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{tan}{x}\left(\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}\right)\right){dx} \\ $$$${my}\:{solution}\:{followed} \\ $$

Answered by mathdave last updated on 02/Sep/20

since  1+tan^2 x=sec^2 x  let I=∫_0 ^(π/4) tanxln(sec^2 x)dx=2∫_0 ^(π/2) tanxln(secx)dx  let  u=ln(secx),du=tanxdx  and dx=(1/(tanx))du  I=2∫_0 ^(π/4) tanx×u×(1/(tanx))du=2∫_0 ^(π/4) udu  I=2[(u^2 /2)]_0 ^(π/4) =2[((ln^2 (cosx))/2)]_0 ^(π/4) =[0−ln^2 ((1/(√2)))]=(1/4)ln^2 (2)  ∵∫_0 ^(π/4) tanx(ln(1+tan^2 x))dx=(1/4)ln^2 (2)  mathdave(02/09/2020)

$${since}\:\:\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}=\mathrm{sec}^{\mathrm{2}} {x} \\ $$$${let}\:{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{tan}{x}\mathrm{ln}\left(\mathrm{sec}^{\mathrm{2}} {x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}{x}\mathrm{ln}\left(\mathrm{sec}{x}\right){dx} \\ $$$${let}\:\:{u}=\mathrm{ln}\left(\mathrm{sec}{x}\right),{du}=\mathrm{tan}{xdx}\:\:{and}\:{dx}=\frac{\mathrm{1}}{\mathrm{tan}{x}}{du} \\ $$$${I}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{tan}{x}×{u}×\frac{\mathrm{1}}{\mathrm{tan}{x}}{du}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {udu} \\ $$$${I}=\mathrm{2}\left[\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\mathrm{2}\left[\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{cos}{x}\right)}{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\left[\mathrm{0}−\mathrm{ln}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\right]=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\because\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{tan}{x}\left(\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}\right)\right){dx}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$${mathdave}\left(\mathrm{02}/\mathrm{09}/\mathrm{2020}\right) \\ $$

Commented by mnjuly1970 last updated on 02/Sep/20

thank you so much sir.......

$${thank}\:{you}\:{so}\:{much}\:{sir}....... \\ $$

Commented by mathdave last updated on 02/Sep/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Answered by mathmax by abdo last updated on 02/Sep/20

I =∫_0 ^(π/4)  tanx(ln(1+tan^2 x))dx  changement tanx =t give  I =∫_0 ^1  tln(1+t^2 )(dt/(1+t^2 )) =_(by parts)    [(1/2)ln(1+t^2 )ln(1+t^2 )]_0 ^1   −∫_0 ^1 (1/2)ln(1+t^2 )((2t)/(1+t^2 )) dt =(1/2)ln^2 (2)−∫_0 ^1  ((tln(1+t^2 ))/(1+t^2 ))dt  =(1/2)ln^2 (2)−I ⇒2I =(1/2)ln^2 (2) ⇒★ I =(1/4)ln^2 (2)★

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{tanx}\left(\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\right)\mathrm{dx}\:\:\mathrm{changement}\:\mathrm{tanx}\:=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{tln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:=_{\mathrm{by}\:\mathrm{parts}} \:\:\:\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{tln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{I}\:\Rightarrow\mathrm{2I}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\:\Rightarrow\bigstar\:\mathrm{I}\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)\bigstar \\ $$

Commented by mnjuly1970 last updated on 03/Sep/20

very nice thank you master...

$${very}\:{nice}\:{thank}\:{you}\:{master}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com