Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 111429 by mnjuly1970 last updated on 03/Sep/20

      please  evaluate :           ....  I=∫_0 ^( (π/2)) ((1/(ln(tan(x)))) + (1/(1−tan(x))))dx =???            :::    M. N.july 1970 :::

$$\:\:\:\:\:\:{please}\:\:{evaluate}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:....\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{{ln}\left({tan}\left({x}\right)\right)}\:+\:\frac{\mathrm{1}}{\mathrm{1}−{tan}\left({x}\right)}\right){dx}\:=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\::::\:\:\:\:\mathscr{M}.\:\mathscr{N}.{july}\:\mathrm{1970}\:::: \\ $$$$\:\: \\ $$

Answered by Dwaipayan Shikari last updated on 03/Sep/20

∫_0 ^(π/2) (1/(log(sinx)−log(cosx)))+∫_0 ^(π/2) (1/(1−tanx))dx  =I_a +I_b =−(π/4)  ∫_0 ^(π/2) (1/(log(sinx)−log(cosx)))=∫_0 ^(π/2) (1/(log(cosx)−log(sinx)))=I_a   2I_a =0⇒I_a =0  ∫_0 ^(π/2) ((sinx)/(cosx−sinx))dx=∫_0 ^(π/2) ((cosx)/(sinx−cosx))=I_a   2I_a =∫_0 ^(π/2) ((cosx−sinx)/(sinx−cosx))  I_a =−(π/4)

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{{log}\left({sinx}\right)−{log}\left({cosx}\right)}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{1}−{tanx}}{dx} \\ $$$$={I}_{{a}} +{I}_{{b}} =−\frac{\pi}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{{log}\left({sinx}\right)−{log}\left({cosx}\right)}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{{log}\left({cosx}\right)−{log}\left({sinx}\right)}={I}_{{a}} \\ $$$$\mathrm{2}{I}_{{a}} =\mathrm{0}\Rightarrow{I}_{{a}} =\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sinx}}{{cosx}−{sinx}}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cosx}}{{sinx}−{cosx}}={I}_{{a}} \\ $$$$\mathrm{2}{I}_{{a}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cosx}−{sinx}}{{sinx}−{cosx}} \\ $$$${I}_{{a}} =−\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 03/Sep/20

solution:  Ω=∫_0 ^( (π/2)) [(1/(log(tan(x))))+(1/(1−tan(x)))]dx  =^(∫_a ^b f(x)dx=∫_(a ) ^( b) f(a+b−x)dx) ∫_0 ^( (π/2)) [(1/(−log(tan(x))))+((tan(x)+1−1)/(tan(x)−1))]dx  =−Ω+(π/2)⇒Ω=(1/4) π .... ✓✓

$${solution}: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{1}}{{log}\left({tan}\left({x}\right)\right)}+\frac{\mathrm{1}}{\mathrm{1}−{tan}\left({x}\right)}\right]{dx} \\ $$$$\overset{\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}\:} ^{\:{b}} {f}\left({a}+{b}−{x}\right){dx}} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{1}}{−{log}\left({tan}\left({x}\right)\right)}+\frac{{tan}\left({x}\right)+\mathrm{1}−\mathrm{1}}{{tan}\left({x}\right)−\mathrm{1}}\right]{dx} \\ $$$$=−\Omega+\frac{\pi}{\mathrm{2}}\Rightarrow\Omega=\frac{\mathrm{1}}{\mathrm{4}}\:\pi\:....\:\checkmark\checkmark \\ $$

Commented by mnjuly1970 last updated on 03/Sep/20

✓correct.

$$\checkmark{correct}. \\ $$

Commented by Dwaipayan Shikari last updated on 03/Sep/20

Answer is (π/4)

$${Answer}\:{is}\:\frac{\pi}{\mathrm{4}} \\ $$

Commented by mathdave last updated on 03/Sep/20

yah that is the answer i  will give my  solution

$${yah}\:{that}\:{is}\:{the}\:{answer}\:{i}\:\:{will}\:{give}\:{my} \\ $$$${solution}\: \\ $$

Commented by mnjuly1970 last updated on 03/Sep/20

your effort is admirable but your answer is not correct.   .....peace be upon you ....

$${your}\:{effort}\:{is}\:{admirable}\:{but}\:{your}\:{answer}\:{is}\:{not}\:{correct}.\: \\ $$$$.....{peace}\:{be}\:{upon}\:{you}\:.... \\ $$$$\: \\ $$

Commented by mnjuly1970 last updated on 03/Sep/20

(1/(ln(tan((π/2)−x))))=(1/(ln(cot(x))))=(1/(−ln(tan(x))))

$$\frac{\mathrm{1}}{{ln}\left({tan}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right)}=\frac{\mathrm{1}}{{ln}\left({cot}\left({x}\right)\right)}=\frac{\mathrm{1}}{−{ln}\left({tan}\left({x}\right)\right)} \\ $$

Commented by mathdave last updated on 03/Sep/20

yah u are very right

$${yah}\:{u}\:{are}\:{very}\:{right} \\ $$

Commented by mnjuly1970 last updated on 03/Sep/20

thak you.

$${thak}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com