Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111458 by mohammad17 last updated on 03/Sep/20

Commented by kaivan.ahmadi last updated on 03/Sep/20

Q_1   (ab)^n =(ab)(ab)...(ab) ; n times  a(ba)(ba)....(ba)b=a(ab)(ab)...(ab)b=  a^2 (ba)....(ba)b^2   continue this way we get result.

$${Q}_{\mathrm{1}} \\ $$$$\left({ab}\right)^{{n}} =\left({ab}\right)\left({ab}\right)...\left({ab}\right)\:;\:{n}\:{times} \\ $$$${a}\left({ba}\right)\left({ba}\right)....\left({ba}\right){b}={a}\left({ab}\right)\left({ab}\right)...\left({ab}\right){b}= \\ $$$${a}^{\mathrm{2}} \left({ba}\right)....\left({ba}\right){b}^{\mathrm{2}} \\ $$$${continue}\:{this}\:{way}\:{we}\:{get}\:{result}. \\ $$

Commented by kaivan.ahmadi last updated on 04/Sep/20

Q_5   let O(G)=2n  for each e≠x∈G⇒∃n:  x^(2n) =e⇒(x^n )^2 =e  but x^n ∈G.  say x^n =a so a^2 =e.  [x^n ≠x other wise if x^n =x⇒x^(n−1) =e⇒  o(x)=n−1 that is a contrudiction]

$${Q}_{\mathrm{5}} \\ $$$${let}\:{O}\left({G}\right)=\mathrm{2}{n} \\ $$$${for}\:{each}\:{e}\neq{x}\in{G}\Rightarrow\exists{n}:\:\:{x}^{\mathrm{2}{n}} ={e}\Rightarrow\left({x}^{{n}} \right)^{\mathrm{2}} ={e} \\ $$$${but}\:{x}^{{n}} \in{G}. \\ $$$${say}\:{x}^{{n}} ={a}\:{so}\:{a}^{\mathrm{2}} ={e}. \\ $$$$\left[{x}^{{n}} \neq{x}\:{other}\:{wise}\:{if}\:{x}^{{n}} ={x}\Rightarrow{x}^{{n}−\mathrm{1}} ={e}\Rightarrow\right. \\ $$$$\left.{o}\left({x}\right)={n}−\mathrm{1}\:{that}\:{is}\:{a}\:{contrudiction}\right] \\ $$$$ \\ $$

Commented by kaivan.ahmadi last updated on 03/Sep/20

Q_4   let G has m element x_i ; i=1,2,..,m  let d_i =O(x_i ) for each x_i ∈G  n=lcm(d_i ).

$${Q}_{\mathrm{4}} \\ $$$${let}\:{G}\:{has}\:{m}\:{element}\:{x}_{{i}} ;\:{i}=\mathrm{1},\mathrm{2},..,{m} \\ $$$${let}\:{d}_{{i}} ={O}\left({x}_{{i}} \right)\:{for}\:{each}\:{x}_{{i}} \in{G} \\ $$$${n}={lcm}\left({d}_{{i}} \right). \\ $$$$ \\ $$

Commented by kaivan.ahmadi last updated on 04/Sep/20

Q_2   S_3 ={e,(1 2),(1 3),(2 3),(1 2 3),(1 3 2)}  the elements e,(1 2),(1 3),(2 3) have order 2  and the elements e,(1 2 3),(1 3 2) have order 3  3

$${Q}_{\mathrm{2}} \\ $$$${S}_{\mathrm{3}} =\left\{{e},\left(\mathrm{1}\:\mathrm{2}\right),\left(\mathrm{1}\:\mathrm{3}\right),\left(\mathrm{2}\:\mathrm{3}\right),\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\right),\left(\mathrm{1}\:\mathrm{3}\:\mathrm{2}\right)\right\} \\ $$$${the}\:{elements}\:{e},\left(\mathrm{1}\:\mathrm{2}\right),\left(\mathrm{1}\:\mathrm{3}\right),\left(\mathrm{2}\:\mathrm{3}\right)\:{have}\:{order}\:\mathrm{2} \\ $$$${and}\:{the}\:{elements}\:{e},\left(\mathrm{1}\:\mathrm{2}\:\mathrm{3}\right),\left(\mathrm{1}\:\mathrm{3}\:\mathrm{2}\right)\:{have}\:{order}\:\mathrm{3} \\ $$$$\mathrm{3} \\ $$

Commented by kaivan.ahmadi last updated on 04/Sep/20

Q_3   let G={e,a,b}  ab≠a sice if ab=a⇒b=e   similarly ab≠b  so ab=e  similarly ba=e and so ab=ba then G is  abelian.  &&  the group of order p^2  where p is prime is  an abelian group  so if O(G)=4=2^2  then G is abelian

$${Q}_{\mathrm{3}} \\ $$$${let}\:{G}=\left\{{e},{a},{b}\right\} \\ $$$${ab}\neq{a}\:{sice}\:{if}\:{ab}={a}\Rightarrow{b}={e}\: \\ $$$${similarly}\:{ab}\neq{b} \\ $$$${so}\:{ab}={e} \\ $$$${similarly}\:{ba}={e}\:{and}\:{so}\:{ab}={ba}\:{then}\:{G}\:{is} \\ $$$${abelian}. \\ $$$$\&\& \\ $$$${the}\:{group}\:{of}\:{order}\:{p}^{\mathrm{2}} \:{where}\:{p}\:{is}\:{prime}\:{is} \\ $$$${an}\:{abelian}\:{group} \\ $$$${so}\:{if}\:{O}\left({G}\right)=\mathrm{4}=\mathrm{2}^{\mathrm{2}} \:{then}\:{G}\:{is}\:{abelian} \\ $$

Commented by kaivan.ahmadi last updated on 04/Sep/20

$$  every group of order 5 is abelian.you can  find this theorem in elementary algebra  books.  &&  generally every gorup of order less than  6 is abelian.

$$\$\$ \\ $$$${every}\:{group}\:{of}\:{order}\:\mathrm{5}\:{is}\:{abelian}.{you}\:{can} \\ $$$${find}\:{this}\:{theorem}\:{in}\:{elementary}\:{algebra} \\ $$$${books}. \\ $$$$\&\& \\ $$$${generally}\:{every}\:{gorup}\:{of}\:{order}\:{less}\:{than} \\ $$$$\mathrm{6}\:{is}\:{abelian}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com