Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 111537 by Aina Samuel Temidayo last updated on 04/Sep/20

What is the minimum value obtained  when an arbitrary number of three  different non−zero digits is divided  by the sum of its digits?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{obtained} \\ $$$$\mathrm{when}\:\mathrm{an}\:\mathrm{arbitrary}\:\mathrm{number}\:\mathrm{of}\:\mathrm{three} \\ $$$$\mathrm{different}\:\mathrm{non}−\mathrm{zero}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its}\:\mathrm{digits}? \\ $$$$ \\ $$

Answered by 1549442205PVT last updated on 04/Sep/20

Suppose abc^(−) =100a+20b+c.We need  find the smallest value of    P=((100a+10b+c)/(a+b+c)) where  a,b,c∈{1,2,3,...,9};a≠b;a≠c;b;c  P=1+((99a+9b)/(a+b+c)).We will prove that  ((99a+9b)/(a+b+c))≥((171)/(18))⇔((11a+b)/(a+b+c))≥((19)/(18))(∗)  ⇔198a+18b≥19a+19b+19c  ⇔179a≥b+19c.Since b≠c≤9  This last  inequality is always true since  b,c≤9⇒b+20c≤8+19.9=179≤179a  due to a≥1.Hence the inequality is  proved.Consequently,P≥1+((171)/(18))=((21)/2)  Which means ((abc^(−) )/(a+b+c)) has least value   equal to ((21)/2)when abc^(−) =189

$$\mathrm{Suppose}\:\overline {\mathrm{abc}}=\mathrm{100a}+\mathrm{20b}+\mathrm{c}.\mathrm{We}\:\mathrm{need} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{P}=\frac{\mathrm{100a}+\mathrm{10b}+\mathrm{c}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:\mathrm{where} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{9}\right\};\mathrm{a}\neq\mathrm{b};\mathrm{a}\neq\mathrm{c};\mathrm{b};\mathrm{c} \\ $$$$\mathrm{P}=\mathrm{1}+\frac{\mathrm{99a}+\mathrm{9b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}.\mathrm{We}\:\mathrm{will}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{99a}+\mathrm{9b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\geqslant\frac{\mathrm{171}}{\mathrm{18}}\Leftrightarrow\frac{\mathrm{11a}+\mathrm{b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\geqslant\frac{\mathrm{19}}{\mathrm{18}}\left(\ast\right) \\ $$$$\Leftrightarrow\mathrm{198a}+\mathrm{18b}\geqslant\mathrm{19a}+\mathrm{19b}+\mathrm{19c} \\ $$$$\Leftrightarrow\mathrm{179a}\geqslant\mathrm{b}+\mathrm{19c}.\mathrm{Since}\:\mathrm{b}\neq\mathrm{c}\leqslant\mathrm{9} \\ $$$$\mathrm{This}\:\mathrm{last}\:\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{always}\:\mathrm{true}\:\mathrm{since} \\ $$$$\mathrm{b},\mathrm{c}\leqslant\mathrm{9}\Rightarrow\mathrm{b}+\mathrm{20c}\leqslant\mathrm{8}+\mathrm{19}.\mathrm{9}=\mathrm{179}\leqslant\mathrm{179a} \\ $$$$\mathrm{due}\:\mathrm{to}\:\mathrm{a}\geqslant\mathrm{1}.\mathrm{Hence}\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{is} \\ $$$$\mathrm{proved}.\mathrm{Consequently},\mathrm{P}\geqslant\mathrm{1}+\frac{\mathrm{171}}{\mathrm{18}}=\frac{\mathrm{21}}{\mathrm{2}} \\ $$$$\mathrm{Which}\:\mathrm{means}\:\frac{\overline {\mathrm{abc}}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:\mathrm{has}\:\mathrm{least}\:\mathrm{value}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\frac{\mathrm{21}}{\mathrm{2}}\mathrm{when}\:\overline {\mathrm{abc}}=\mathrm{189} \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

“three different digits”

$$``{three}\:{different}\:{digits}'' \\ $$

Commented by 1549442205PVT last updated on 04/Sep/20

Thank you,Sir.I missed that hypothesis  and corrected

$$\mathrm{Thank}\:\mathrm{you},\mathrm{Sir}.\mathrm{I}\:\mathrm{missed}\:\mathrm{that}\:\mathrm{hypothesis} \\ $$$$\mathrm{and}\:\mathrm{corrected} \\ $$

Commented by Aina Samuel Temidayo last updated on 04/Sep/20

Thanks.

$$\mathrm{Thanks}. \\ $$

Commented by Aina Samuel Temidayo last updated on 04/Sep/20

How did you know you are to prove  that ((99a+9b)/(a+b+c))≥((171)/(18)) ?

$$\mathrm{How}\:\mathrm{did}\:\mathrm{you}\:\mathrm{know}\:\mathrm{you}\:\mathrm{are}\:\mathrm{to}\:\mathrm{prove} \\ $$$$\mathrm{that}\:\frac{\mathrm{99a}+\mathrm{9b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\geqslant\frac{\mathrm{171}}{\mathrm{18}}\:? \\ $$$$ \\ $$

Commented by 1549442205PVT last updated on 05/Sep/20

Had in the above solution since it is  equivalent ((11a+b)/(a+b+c))≥((19)/(18))  ⇔198a+18b≥19a+19b+19c  ⇔179a≥19c+b.The inequality is  always true ∀a,b,c∈{1,2,...,9},a≠b,  b≠c,c≠a.Indeed,19c+b≤19.9+8  =179.1≤179a due to a≥11

$$\mathrm{Had}\:\mathrm{in}\:\mathrm{the}\:\mathrm{above}\:\mathrm{solution}\:\mathrm{since}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{equivalent}\:\frac{\mathrm{11a}+\mathrm{b}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\geqslant\frac{\mathrm{19}}{\mathrm{18}} \\ $$$$\Leftrightarrow\mathrm{198a}+\mathrm{18b}\geqslant\mathrm{19a}+\mathrm{19b}+\mathrm{19c} \\ $$$$\Leftrightarrow\mathrm{179a}\geqslant\mathrm{19c}+\mathrm{b}.\mathrm{The}\:\mathrm{inequality}\:\mathrm{is} \\ $$$$\mathrm{always}\:\mathrm{true}\:\forall\mathrm{a},\mathrm{b},\mathrm{c}\in\left\{\mathrm{1},\mathrm{2},...,\mathrm{9}\right\},\mathrm{a}\neq\mathrm{b}, \\ $$$$\mathrm{b}\neq\mathrm{c},\mathrm{c}\neq\mathrm{a}.\mathrm{Indeed},\mathrm{19c}+\mathrm{b}\leqslant\mathrm{19}.\mathrm{9}+\mathrm{8} \\ $$$$=\mathrm{179}.\mathrm{1}\leqslant\mathrm{179a}\:\mathrm{due}\:\mathrm{to}\:\mathrm{a}\geqslant\mathrm{11} \\ $$$$ \\ $$

Commented by Aina Samuel Temidayo last updated on 05/Sep/20

Thanks but you didn′t really answer  my question.

$$\mathrm{Thanks}\:\mathrm{but}\:\mathrm{you}\:\mathrm{didn}'\mathrm{t}\:\mathrm{really}\:\mathrm{answer} \\ $$$$\mathrm{my}\:\mathrm{question}. \\ $$

Answered by Her_Majesty last updated on 04/Sep/20

((100a+10b+c)/(a+b+c))  (1) lowest number with a<b<c  (2) a as low as possible ⇒ a=1  (3) c as high as possible ⇒ c=9  ((10b+109)/(b+10))=10 with b→∞ ⇒ b as high as  possible ⇒ b=8 (a≠b≠c)  ⇒ ((189)/(18))=10.5

$$\frac{\mathrm{100}{a}+\mathrm{10}{b}+{c}}{{a}+{b}+{c}} \\ $$$$\left(\mathrm{1}\right)\:{lowest}\:{number}\:{with}\:{a}<{b}<{c} \\ $$$$\left(\mathrm{2}\right)\:{a}\:{as}\:{low}\:{as}\:{possible}\:\Rightarrow\:{a}=\mathrm{1} \\ $$$$\left(\mathrm{3}\right)\:{c}\:{as}\:{high}\:{as}\:{possible}\:\Rightarrow\:{c}=\mathrm{9} \\ $$$$\frac{\mathrm{10}{b}+\mathrm{109}}{{b}+\mathrm{10}}=\mathrm{10}\:{with}\:{b}\rightarrow\infty\:\Rightarrow\:{b}\:{as}\:{high}\:{as} \\ $$$${possible}\:\Rightarrow\:{b}=\mathrm{8}\:\left({a}\neq{b}\neq{c}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{189}}{\mathrm{18}}=\mathrm{10}.\mathrm{5} \\ $$

Commented by Aina Samuel Temidayo last updated on 04/Sep/20

How did you know ((10b+109)/(b+10)) is  equal to 10?

$$\mathrm{How}\:\mathrm{did}\:\mathrm{you}\:\mathrm{know}\:\frac{\mathrm{10b}+\mathrm{109}}{\mathrm{b}+\mathrm{10}}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{10}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com