Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111611 by mathdave last updated on 04/Sep/20

solve for x ad y in  5x(1+(1/(x^2 +y^2 )))=12.........(1)  5y(1−(1/(x^2 +y^2 )))=4..........(2)

$${solve}\:{for}\:{x}\:{ad}\:{y}\:{in} \\ $$$$\mathrm{5}{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{12}.........\left(\mathrm{1}\right) \\ $$$$\mathrm{5}{y}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{4}..........\left(\mathrm{2}\right) \\ $$

Answered by Her_Majesty last updated on 04/Sep/20

y=px  (1) 5x^2 −12x+(5/(p^2 +1))=0  (2) 5x^2 −(4/p)x−(5/(p^2 +1))=0  (1)−(2) ⇒ x=((5p)/(2(3p−1)(p^2 +1)))  (1)+(2) ⇒ x=((2(3p+1))/(5p))  ⇒ ((5p)/(2(3p−1)(p^2 +1)))=((2(3p+1))/(5p))  p^4 +(7/(36))p^2 −(1/9)=0  ⇒ p=±(1/2)∨p=±(2/3)i  ⇒ (x; y)∈{((2/5); −(1/5)); (2; 1); ((6/5)±(3/5)i; (2/5)∓(4/5)i)}

$${y}={px} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{5}{x}^{\mathrm{2}} −\mathrm{12}{x}+\frac{\mathrm{5}}{{p}^{\mathrm{2}} +\mathrm{1}}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{5}{x}^{\mathrm{2}} −\frac{\mathrm{4}}{{p}}{x}−\frac{\mathrm{5}}{{p}^{\mathrm{2}} +\mathrm{1}}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)−\left(\mathrm{2}\right)\:\Rightarrow\:{x}=\frac{\mathrm{5}{p}}{\mathrm{2}\left(\mathrm{3}{p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:\Rightarrow\:{x}=\frac{\mathrm{2}\left(\mathrm{3}{p}+\mathrm{1}\right)}{\mathrm{5}{p}} \\ $$$$\Rightarrow\:\frac{\mathrm{5}{p}}{\mathrm{2}\left(\mathrm{3}{p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{\mathrm{2}\left(\mathrm{3}{p}+\mathrm{1}\right)}{\mathrm{5}{p}} \\ $$$${p}^{\mathrm{4}} +\frac{\mathrm{7}}{\mathrm{36}}{p}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{9}}=\mathrm{0} \\ $$$$\Rightarrow\:{p}=\pm\frac{\mathrm{1}}{\mathrm{2}}\vee{p}=\pm\frac{\mathrm{2}}{\mathrm{3}}\mathrm{i} \\ $$$$\Rightarrow\:\left({x};\:{y}\right)\in\left\{\left(\frac{\mathrm{2}}{\mathrm{5}};\:−\frac{\mathrm{1}}{\mathrm{5}}\right);\:\left(\mathrm{2};\:\mathrm{1}\right);\:\left(\frac{\mathrm{6}}{\mathrm{5}}\pm\frac{\mathrm{3}}{\mathrm{5}}\mathrm{i};\:\frac{\mathrm{2}}{\mathrm{5}}\mp\frac{\mathrm{4}}{\mathrm{5}}\mathrm{i}\right)\right\} \\ $$

Answered by mathdave last updated on 04/Sep/20

solution to       5x(1+(1/(x^2 +y^2 )))=12........(1)  and  5y(1−(1/(x^2 +y^2 )))=4.........(2)  let decompose the equations to make them similar  that is  5x(1+(1/(x^2 +y^2 )))=5•(2.4)........(3)  5y(1−(1/(x^2 +y^2 )))=5•(0.8)..........(4)  comparing decomposed equations  5x=5.........(5)  x=1  substitute the value of x in (6) below  1+(1/(x^2 +y^2 ))=2.4..........(6)  1+(1/(1+y^2 ))=2.4⇒2+y^2 =2.4+2.4y^2   −1.4y^2 =0.4      y=0.535i(3d.p)  and from equation  (4)  comparing sides  5y=5........(7)  y=1  substituting for the value of y below   1−(1/(x^2 +y^2 ))=0.8.........(8)  x^2 +1−1=0.8x^2 +0.8  0.2x^2 =0.8  x=2  ∵(x_1 ,y_1 )  and (x_2 ,y_2 )=(1,0.535i)  and  (2,1)  by mathdave(04/09/2020)

$${solution}\:{to}\:\:\:\:\: \\ $$$$\mathrm{5}{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{12}........\left(\mathrm{1}\right)\:\:{and} \\ $$$$\mathrm{5}{y}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{4}.........\left(\mathrm{2}\right) \\ $$$${let}\:{decompose}\:{the}\:{equations}\:{to}\:{make}\:{them}\:{similar} \\ $$$${that}\:{is} \\ $$$$\mathrm{5}{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{5}\bullet\left(\mathrm{2}.\mathrm{4}\right)........\left(\mathrm{3}\right) \\ $$$$\mathrm{5}{y}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{5}\bullet\left(\mathrm{0}.\mathrm{8}\right)..........\left(\mathrm{4}\right) \\ $$$${comparing}\:{decomposed}\:{equations} \\ $$$$\mathrm{5}{x}=\mathrm{5}.........\left(\mathrm{5}\right) \\ $$$${x}=\mathrm{1} \\ $$$${substitute}\:{the}\:{value}\:{of}\:{x}\:{in}\:\left(\mathrm{6}\right)\:{below} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{2}.\mathrm{4}..........\left(\mathrm{6}\right) \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{y}^{\mathrm{2}} }=\mathrm{2}.\mathrm{4}\Rightarrow\mathrm{2}+{y}^{\mathrm{2}} =\mathrm{2}.\mathrm{4}+\mathrm{2}.\mathrm{4}{y}^{\mathrm{2}} \\ $$$$−\mathrm{1}.\mathrm{4}{y}^{\mathrm{2}} =\mathrm{0}.\mathrm{4}\:\:\:\: \\ $$$${y}=\mathrm{0}.\mathrm{535}{i}\left(\mathrm{3}{d}.{p}\right) \\ $$$${and}\:{from}\:{equation}\:\:\left(\mathrm{4}\right)\:\:{comparing}\:{sides} \\ $$$$\mathrm{5}{y}=\mathrm{5}........\left(\mathrm{7}\right) \\ $$$${y}=\mathrm{1} \\ $$$${substituting}\:{for}\:{the}\:{value}\:{of}\:{y}\:{below}\: \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{0}.\mathrm{8}.........\left(\mathrm{8}\right) \\ $$$${x}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}=\mathrm{0}.\mathrm{8}{x}^{\mathrm{2}} +\mathrm{0}.\mathrm{8} \\ $$$$\mathrm{0}.\mathrm{2}{x}^{\mathrm{2}} =\mathrm{0}.\mathrm{8} \\ $$$${x}=\mathrm{2} \\ $$$$\because\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:\:{and}\:\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right)=\left(\mathrm{1},\mathrm{0}.\mathrm{535}{i}\right)\:\:{and}\:\:\left(\mathrm{2},\mathrm{1}\right) \\ $$$${by}\:{mathdave}\left(\mathrm{04}/\mathrm{09}/\mathrm{2020}\right) \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com