Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111615 by mathdave last updated on 04/Sep/20

solve  ∫(dx/((x^2 +2x+3)(√(x^2 +x+3))))

solvedx(x2+2x+3)x2+x+3

Answered by mathmax by abdo last updated on 04/Sep/20

I =∫  (dx/((x^2  +2x+3)(√(x^2  +x+3)))) ⇒I =∫  (dx/((x^2 +x+3 +x)(√(x^2  +x+3))))  we have x^2  +x +3 =x^2  +((2x)/2) +(1/4) +3−(1/4) =(x+(1/2))^2  +((11)/4)  we do the changement x+(1/2) =((√(11))/2) sh(t) ⇒  I =∫  (1/({((11)/4)sh^2 t +((11)/4) +((√(11))/2)sht−(1/2)}((√(11))/2)cht))((√(11))/2) sht dt  =4∫  (dt/(11sh^2 t +11 +2(√(11))sht −2)) =4 ∫  (dt/(11sh^2 t +2(√(11))sht +9))  =4∫  (dt/(11((ch(2t)−1)/2)+2 (√(11))sh(t) +9))  8 ∫  (dt/(11ch(2t)+4(√(11))sht +7)) =8 ∫  (dt/(11((e^(2t)  +e^(−2t) )/2)+4(√(11))((e^t −e^(−t) )/2) +7))  =16 ∫ (dt/(11e^(2t)  +11e^(−2t)  +4(√(11))e^t −4(√(11))e^(−t)  +14))  =_(e^t  =z)    16 ∫  (dz/(z{ 11z^2 +11z^(−2)  +4(√(11))z−4(√(11))z^(−1)  +14}))  =16  ∫   ((zdz)/(11z^4  +11 +4(√(11))z^3 −4(√(11))z+ 14z^2 ))  =16 ∫ ((zdz)/(11z^4 +14z^2  +4(√(11))z^3  +11))  rest decomposition of  f(z) =(z/(11z^4  +14z^2  +4(√(11))z^3  +11)) ....be continued....

I=dx(x2+2x+3)x2+x+3I=dx(x2+x+3+x)x2+x+3wehavex2+x+3=x2+2x2+14+314=(x+12)2+114wedothechangementx+12=112sh(t)I=1{114sh2t+114+112sht12}112cht112shtdt=4dt11sh2t+11+211sht2=4dt11sh2t+211sht+9=4dt11ch(2t)12+211sh(t)+98dt11ch(2t)+411sht+7=8dt11e2t+e2t2+411etet2+7=16dt11e2t+11e2t+411et411et+14=et=z16dzz{11z2+11z2+411z411z1+14}=16zdz11z4+11+411z3411z+14z2=16zdz11z4+14z2+411z3+11restdecompositionoff(z)=z11z4+14z2+411z3+11....becontinued....

Answered by Her_Majesty last updated on 05/Sep/20

∫(dx/((x^2 +2x+3)(√(x^2 +x+3))))=  use t=((√(11))/(11))(2x+1+2(√(x^2 +x+3)))  =((16)/(11))∫(t/(t^4 +(4/( (√(11))))t^3 +((14)/(11))t^2 −(4/( (√(11))))t+1))dt  t^4 +(4/( (√(11))))t^3 +((14)/(11))t^2 −(4/( (√(11))))t+1=  =(t^2 +(2/( (√(11))))(1+(√(2+3(√3))))t+((9+4(√3)+8(√(−1+(√3)))+2(√(2+2(√3))))/(11)))×  ×(t^2 +(2/( (√(11))))(1−(√(2+2(√3))))t+((9+4(√3)−8(√(−1+(√3)))−2(√(2+2(√3))))/(11)))  and I refuse to decompose it, sorry

dx(x2+2x+3)x2+x+3=uset=1111(2x+1+2x2+x+3)=1611tt4+411t3+1411t2411t+1dtt4+411t3+1411t2411t+1==(t2+211(1+2+33)t+9+43+81+3+22+2311)××(t2+211(12+23)t+9+4381+322+2311)andIrefusetodecomposeit,sorry

Commented by mathdave last updated on 05/Sep/20

u c your life why cant u continue the  solve has u know book ∙sorry u no  nothing

ucyourlifewhycantucontinuethesolvehasuknowbooksorryunonothing

Commented by mathdave last updated on 05/Sep/20

has u antagonized my working i  thought you will give correct evaluation  no one is monopoly of knowledge ooo  but am nt afraid to say u cant  withstand me in mathematics

hasuantagonizedmyworkingithoughtyouwillgivecorrectevaluationnooneismonopolyofknowledgeooobutamntafraidtosayucantwithstandmeinmathematics

Commented by Her_Majesty last updated on 05/Sep/20

Sir I beg you to accept that  (1/(a+b))≠(1/a)+(1/b)  that′s all.

SirIbegyoutoacceptthat1a+b1a+1bthatsall.

Commented by Her_Majesty last updated on 05/Sep/20

btw I can continue but I don′t want to.  obviously I′d have to decompose the fraction  and solve 2 integrals of the form  ∫((at+b)/(t^2 +αt+β))dt but I don′t waste my time with  these given constants; I won′t gain any new  experience doing so.

btwIcancontinuebutIdontwantto.obviouslyIdhavetodecomposethefractionandsolve2integralsoftheformat+bt2+αt+βdtbutIdontwastemytimewiththesegivenconstants;Iwontgainanynewexperiencedoingso.

Commented by mathdave last updated on 05/Sep/20

tell me what i dont know for this am  101% (very)^(∞  ) and super correct

tellmewhatidontknowforthisam101%(very)andsupercorrect

Commented by mathdave last updated on 05/Sep/20

u most b very very stupid with that big  mouth u just said u re mannerless

umostbveryverystupidwiththatbigmouthujustsaiduremannerless

Commented by Her_Majesty last updated on 05/Sep/20

if you solve an integral the test is the  derivation.  I have shown your result is not correct.  ∫f(x)dx=F(x)+C ⇔ (d/dx)[F(x)+C]=f(x)  (d/dx)[F(x)+C]≠f(x) ⇒ F(x)+C≠∫f(x)dx  prove that I′m wrong or shut up

ifyousolveanintegralthetestisthederivation.Ihaveshownyourresultisnotcorrect.f(x)dx=F(x)+Cddx[F(x)+C]=f(x)ddx[F(x)+C]f(x)F(x)+Cf(x)dxprovethatImwrongorshutup

Commented by mathdave last updated on 05/Sep/20

then proceed to do the correct things let  me applaud you for the good work .if u  cant keep the fuck up let me see views

thenproceedtodothecorrectthingsletmeapplaudyouforthegoodwork.ifucantkeepthefuckupletmeseeviews

Terms of Service

Privacy Policy

Contact: info@tinkutara.com