Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111616 by mathdave last updated on 04/Sep/20

solve the integral problem  ∫((cosx)/(2−sin2x))dx

$${solve}\:{the}\:{integral}\:{problem} \\ $$$$\int\frac{\mathrm{cos}{x}}{\mathrm{2}−\mathrm{sin2}{x}}{dx} \\ $$

Answered by Her_Majesty last updated on 05/Sep/20

∫((cos x)/(2−sin 2x))dx=  (use t=tan (x/2))  =−∫((t^2 −1)/(t^4 +2t^3 +2t^2 −2t+1))dt=  =((√3)/6)∫(((t−1)/(t^2 +(1−(√3))t+2−(√3)))−((t−1)/(t^2 +(1+(√3))t+2+(√3))))dt=  =((√3)/(12))ln ((t^2 +(1−(√3))t+2−(√3))/(t^2 +(1+(√3))t+2+(√3))) −(1/2)(arctan ((1−(√3))t−1) +arctan ((1+(√3))t−1))  now put t=tan (x/2)

$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}}{dx}= \\ $$$$\left(\mathrm{use}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right) \\ $$$$=−\int\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}}{dt}= \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\int\left(\frac{{t}−\mathrm{1}}{{t}^{\mathrm{2}} +\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){t}+\mathrm{2}−\sqrt{\mathrm{3}}}−\frac{{t}−\mathrm{1}}{{t}^{\mathrm{2}} +\left(\mathrm{1}+\sqrt{\mathrm{3}}\right){t}+\mathrm{2}+\sqrt{\mathrm{3}}}\right){dt}= \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{12}}\mathrm{ln}\:\frac{{t}^{\mathrm{2}} +\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){t}+\mathrm{2}−\sqrt{\mathrm{3}}}{{t}^{\mathrm{2}} +\left(\mathrm{1}+\sqrt{\mathrm{3}}\right){t}+\mathrm{2}+\sqrt{\mathrm{3}}}\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{arctan}\:\left(\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){t}−\mathrm{1}\right)\:+\mathrm{arctan}\:\left(\left(\mathrm{1}+\sqrt{\mathrm{3}}\right){t}−\mathrm{1}\right)\right) \\ $$$$\mathrm{now}\:\mathrm{put}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}} \\ $$

Answered by ajfour last updated on 05/Sep/20

let x=(π/4)−θ  I=−∫((cos ((π/4)−θ)dθ)/(2−cos 2θ))     =−(1/(2(√2)))∫((cos θ+sin θ)/(sin^2 θ))dθ     =(1/(2(√2))){cosec θ−ln ∣cosec θ−cot θ∣}+c    I =(1/(2(√2)sin ((π/4)−x)))−(1/(2(√2)))ln∣tan ((π/8)−(x/2))∣+c

$${let}\:{x}=\frac{\pi}{\mathrm{4}}−\theta \\ $$$${I}=−\int\frac{\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}−\theta\right){d}\theta}{\mathrm{2}−\mathrm{cos}\:\mathrm{2}\theta} \\ $$$$\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int\frac{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta}{\mathrm{sin}\:^{\mathrm{2}} \theta}{d}\theta \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\mathrm{cosec}\:\theta−\mathrm{ln}\:\mid\mathrm{cosec}\:\theta−\mathrm{cot}\:\theta\mid\right\}+{c} \\ $$$$\:\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−{x}\right)}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\mid\mathrm{tan}\:\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)\mid+{c}\: \\ $$

Commented by Her_Majesty last updated on 05/Sep/20

great, I haven′t thought of this

$${great},\:{I}\:{haven}'{t}\:{thought}\:{of}\:{this} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com