All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 111616 by mathdave last updated on 04/Sep/20
solvetheintegralproblem∫cosx2−sin2xdx
Answered by Her_Majesty last updated on 05/Sep/20
∫cosx2−sin2xdx=(uset=tanx2)=−∫t2−1t4+2t3+2t2−2t+1dt==36∫(t−1t2+(1−3)t+2−3−t−1t2+(1+3)t+2+3)dt==312lnt2+(1−3)t+2−3t2+(1+3)t+2+3−12(arctan((1−3)t−1)+arctan((1+3)t−1))nowputt=tanx2
Answered by ajfour last updated on 05/Sep/20
letx=π4−θI=−∫cos(π4−θ)dθ2−cos2θ=−122∫cosθ+sinθsin2θdθ=122{cosecθ−ln∣cosecθ−cotθ∣}+cI=122sin(π4−x)−122ln∣tan(π8−x2)∣+c
Commented by Her_Majesty last updated on 05/Sep/20
great,Ihaven′tthoughtofthis
Terms of Service
Privacy Policy
Contact: info@tinkutara.com