Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111619 by mathdave last updated on 05/Sep/20

solve for x in   x^2 +4x=(√(40x^2 +8x−16))

$${solve}\:{for}\:{x}\:{in}\: \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}=\sqrt{\mathrm{40}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{16}} \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

square it, solve the 4^(th)  degree polynomial  and check the solutions, 1 of the 3 is false  exact solutions possible but hard to handle,  approximation gives  x_1 ≈−10.2894606  x_2 ≈.914622644  x_3 ≈2.16142299

$${square}\:{it},\:{solve}\:{the}\:\mathrm{4}^{{th}} \:{degree}\:{polynomial} \\ $$$${and}\:{check}\:{the}\:{solutions},\:\mathrm{1}\:{of}\:{the}\:\mathrm{3}\:{is}\:{false} \\ $$$${exact}\:{solutions}\:{possible}\:{but}\:{hard}\:{to}\:{handle}, \\ $$$${approximation}\:{gives} \\ $$$${x}_{\mathrm{1}} \approx−\mathrm{10}.\mathrm{2894606} \\ $$$${x}_{\mathrm{2}} \approx.\mathrm{914622644} \\ $$$${x}_{\mathrm{3}} \approx\mathrm{2}.\mathrm{16142299} \\ $$

Answered by mathdave last updated on 04/Sep/20

solution  let x^2 +4x=2(√(10x^2 +8x−4))  ........(1)  let t^2 =10x^2 +8x−4  then  t^2 =2x^2 +8x^2 +8x−4  t^2 −8x^2 +4=2x^2 +8x  t^2 −8x^2 +4=2(x^2 +4x).........(2)  from (1)  x^2 +4x=2t........(x)  multiply equation (x) by  2  2(x^2 +4x)=4t..........(3)  equating  (2) and (3)  t^2 −8x^2 +4=4t⇒t^2 −4t−8x^2 +4=0  t^2 −4t+4−4−8x^2 +4=0  (t−2)^2 −8x^2 =0⇒(t−2)^2 −(2(√2)x)^2   (t−2−2(√2)x)(t−2+2(√2)x)=0  t=2+2(√2)x 0r 2−2(√2)x  but t^2 =10x^2 +8x−4  (2+2(√2)x)^2 =10x^2 +8x−4  2x^2 +8x(1−(√2))−8=0  x=((−4(1−(√2))±(√(64−32(√2))))/2)  ∵x_1 =(2(√2)−2)+2(√(4−2(√2)))  and x_2 =(2(√2)−2)−2(√(4−2(√2)))  and at t=2−2(√2)x  then   (2−2(√2)x)=10x^2 +8x−4  x^2 +4(1+(√2))x−4  x_(3,4) =2(−(√2)−1±(√(4+2(√2))))  x_3 =2(−1−(√2)+(√(4+2(√2))))   and  x_4 =−2(1+(√2)+(√(4+(√2))))  mathdave

$${solution} \\ $$$${let}\:{x}^{\mathrm{2}} +\mathrm{4}{x}=\mathrm{2}\sqrt{\mathrm{10}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4}}\:\:........\left(\mathrm{1}\right) \\ $$$${let}\:{t}^{\mathrm{2}} =\mathrm{10}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4} \\ $$$${then}\:\:{t}^{\mathrm{2}} =\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4} \\ $$$${t}^{\mathrm{2}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{x} \\ $$$${t}^{\mathrm{2}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}=\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{4}{x}\right).........\left(\mathrm{2}\right) \\ $$$${from}\:\left(\mathrm{1}\right) \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}=\mathrm{2}{t}........\left({x}\right) \\ $$$${multiply}\:{equation}\:\left({x}\right)\:{by}\:\:\mathrm{2} \\ $$$$\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{4}{x}\right)=\mathrm{4}{t}..........\left(\mathrm{3}\right) \\ $$$${equating}\:\:\left(\mathrm{2}\right)\:{and}\:\left(\mathrm{3}\right) \\ $$$${t}^{\mathrm{2}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}=\mathrm{4}{t}\Rightarrow{t}^{\mathrm{2}} −\mathrm{4}{t}−\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{4}{t}+\mathrm{4}−\mathrm{4}−\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}=\mathrm{0} \\ $$$$\left({t}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{8}{x}^{\mathrm{2}} =\mathrm{0}\Rightarrow\left({t}−\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{2}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{2}} \\ $$$$\left({t}−\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}{x}\right)\left({t}−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}{x}\right)=\mathrm{0} \\ $$$${t}=\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}{x}\:\mathrm{0}{r}\:\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}{x} \\ $$$${but}\:{t}^{\mathrm{2}} =\mathrm{10}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4} \\ $$$$\left(\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{2}} =\mathrm{10}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}{x}\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)−\mathrm{8}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{4}\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\pm\sqrt{\mathrm{64}−\mathrm{32}\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$$\because{x}_{\mathrm{1}} =\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\right)+\mathrm{2}\sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}\:\:{and}\:{x}_{\mathrm{2}} =\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\right)−\mathrm{2}\sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${and}\:{at}\:{t}=\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}{x} \\ $$$${then}\:\:\:\left(\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}{x}\right)=\mathrm{10}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4} \\ $$$${x}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}−\mathrm{4} \\ $$$${x}_{\mathrm{3},\mathrm{4}} =\mathrm{2}\left(−\sqrt{\mathrm{2}}−\mathrm{1}\pm\sqrt{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$$${x}_{\mathrm{3}} =\mathrm{2}\left(−\mathrm{1}−\sqrt{\mathrm{2}}+\sqrt{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}}\right)\:\:\:{and}\:\:{x}_{\mathrm{4}} =−\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{2}}+\sqrt{\mathrm{4}+\sqrt{\mathrm{2}}}\right) \\ $$$${mathdave} \\ $$$$ \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

but the question you posted is  x^2 +4x=(√(40x^2 +3x−16))  and you can′t solve it this way.

$${but}\:{the}\:{question}\:{you}\:{posted}\:{is} \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}=\sqrt{\mathrm{40}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{16}} \\ $$$${and}\:{you}\:{can}'{t}\:{solve}\:{it}\:{this}\:{way}. \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

anyway one of your 4 solutions doesn′t solve  the equation x^2 +4x=(√(40x^2 +32x−16)), so  please finish the work

$${anyway}\:{one}\:{of}\:{your}\:\mathrm{4}\:{solutions}\:{doesn}'{t}\:{solve} \\ $$$${the}\:{equation}\:{x}^{\mathrm{2}} +\mathrm{4}{x}=\sqrt{\mathrm{40}{x}^{\mathrm{2}} +\mathrm{32}{x}−\mathrm{16}},\:{so} \\ $$$${please}\:{finish}\:{the}\:{work} \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

x^2 +4x=(√(40x^2 +32x−16))  squaring and transforming  x^4 +8x^3 −24x−32x+16=0  (x^2 +4(1+(√2))x−4)(x^2 +4(1−(√2))x−4)=0  x_1 =−2(1+(√2)+(√(4+2(√2))))  x_2 =−2(1+(√2)−(√(4+2(√2))))  x_3 =−2(1−(√2)+(√(4−2(√2)))) [false!]  x_4 =−2(1−(√2)−(√(4−2(√2))))

$${x}^{\mathrm{2}} +\mathrm{4}{x}=\sqrt{\mathrm{40}{x}^{\mathrm{2}} +\mathrm{32}{x}−\mathrm{16}} \\ $$$${squaring}\:{and}\:{transforming} \\ $$$${x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{3}} −\mathrm{24}{x}−\mathrm{32}{x}+\mathrm{16}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}−\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){x}−\mathrm{4}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{2}}+\sqrt{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$$${x}_{\mathrm{2}} =−\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{2}}−\sqrt{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$$${x}_{\mathrm{3}} =−\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{2}}+\sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}\right)\:\left[{false}!\right] \\ $$$${x}_{\mathrm{4}} =−\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{2}}−\sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$

Commented by Her_Majesty last updated on 05/Sep/20

you changed the question now but you  changed it to a different from the one you  solved... you have to be more careful

$${you}\:{changed}\:{the}\:{question}\:{now}\:{but}\:{you} \\ $$$${changed}\:{it}\:{to}\:{a}\:{different}\:{from}\:{the}\:{one}\:{you} \\ $$$${solved}...\:{you}\:{have}\:{to}\:{be}\:{more}\:{careful} \\ $$

Commented by mathdave last updated on 05/Sep/20

since u discovered that one of the  solutiondidnt satisfy d problem then  go ahead an fix it

$${since}\:{u}\:{discovered}\:{that}\:{one}\:{of}\:{the} \\ $$$${solutiondidnt}\:{satisfy}\:{d}\:{problem}\:{then} \\ $$$${go}\:{ahead}\:{an}\:{fix}\:{it}\: \\ $$

Commented by mathdave last updated on 05/Sep/20

stop murmuring

$${stop}\:{murmuring}\: \\ $$

Commented by mathdave last updated on 05/Sep/20

more  careful to  which way, are u my teacher that u are cautioning me

$${more}\:\:{careful}\:{to}\:\:{which}\:{way},\:{are}\:{u}\:{my}\:{teacher}\:{that}\:{u}\:{are}\:{cautioning}\:{me} \\ $$$$ \\ $$

Commented by mathdave last updated on 05/Sep/20

the only way i can believe dat u know  mathematics is when u discovered err  and do some working on ur own to avert the err  but u saying it orally or using a calculator or checking  wolfram to determine the answer do nt tell u know  mathematics

$${the}\:{only}\:{way}\:{i}\:{can}\:{believe}\:{dat}\:{u}\:{know} \\ $$$${mathematics}\:{is}\:{when}\:{u}\:{discovered}\:{err} \\ $$$${and}\:{do}\:{some}\:{working}\:{on}\:{ur}\:{own}\:{to}\:{avert}\:{the}\:{err} \\ $$$${but}\:{u}\:{saying}\:{it}\:{orally}\:{or}\:{using}\:{a}\:{calculator}\:{or}\:{checking} \\ $$$${wolfram}\:{to}\:{determine}\:{the}\:{answer}\:{do}\:{nt}\:{tell}\:{u}\:{know} \\ $$$${mathematics} \\ $$$$ \\ $$

Commented by Her_Majesty last updated on 05/Sep/20

the point is here, you posted a question  that I solved, then you solved a different  question, then you changed the question  to a third version.

$${the}\:{point}\:{is}\:{here},\:{you}\:{posted}\:{a}\:{question} \\ $$$${that}\:{I}\:{solved},\:{then}\:{you}\:{solved}\:{a}\:{different} \\ $$$${question},\:{then}\:{you}\:{changed}\:{the}\:{question} \\ $$$${to}\:{a}\:{third}\:{version}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com