Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 111755 by mathmax by abdo last updated on 04/Sep/20

calculate lim_(n→+∞)   Σ_(k=1) ^n   (√((n−k)/(n^3  +n^2 k)))

calculatelimn+k=1nnkn3+n2k

Answered by Dwaipayan Shikari last updated on 04/Sep/20

(1/n)lim_(n→∞) Σ_(k=1) ^n (√((n−k)/(n+k )))  =(1/n)lim_(n→∞) (√(((1−(k/n))/(1+(k/n)))  )) =∫_0 ^1 (√((1−x)/(1+x)))dx  =∫_0 ^1 ((1−x)/( (√(1−x^2 ))))  =∫_0 ^1 (1/( (√(1−x^2 ))))+(1/2)∫_0 ^1 ((−2x)/( (√(1−x^2 ))))  =[sin^(−1) x]_0 ^1 +[(√(1−x^2 )) ]_0 ^1   =(π/2)−1

1nlimnnk=1nkn+k=1nlimn1kn1+kn=011x1+xdx=011x1x2=0111x2+12012x1x2=[sin1x]01+[1x2]01=π21

Answered by mathmax by abdo last updated on 07/Sep/20

let S_n =Σ_(k=1) ^n  (√((n−k)/(n^3  +n^2 k))) ⇒ S_n =Σ_(k=1) ^n (√((n(1−(k/n)))/(n^3 (1+(k/n)))))  =(1/n) Σ_(k=1) ^n  (√((1−(k/n))/(1+(k/n)))) →∫_0 ^1 (√((1−x)/(1+x)))dx   (S_n is Rieman sum)  we do the changement x =cosθ ⇒∫_0 ^1 (√((1−x)/(1+x)))dx  =∫_(π/2) ^0 (√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2)))))(−sinθ)dθ =2∫_0 ^(π/2) ((sin((θ/2)))/(cos((θ/2)))) sin((θ/2))cos((θ/2))dθ  =∫_0 ^(π/2)  2sin^2 ((θ/2))dθ =∫_0 ^(π/2) (1−cosθ)dθ =(π/2) −[sinθ]_0 ^(π/2)   =(π/2)−1 ⇒lim_(n→+∞)  S_n =(π/2)−1

letSn=k=1nnkn3+n2kSn=k=1nn(1kn)n3(1+kn)=1nk=1n1kn1+kn011x1+xdx(SnisRiemansum)wedothechangementx=cosθ011x1+xdx=π202sin2(θ2)2cos2(θ2)(sinθ)dθ=20π2sin(θ2)cos(θ2)sin(θ2)cos(θ2)dθ=0π22sin2(θ2)dθ=0π2(1cosθ)dθ=π2[sinθ]0π2=π21limn+Sn=π21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com