Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 111762 by mathmax by abdo last updated on 04/Sep/20

caoculate ∫_0 ^(π/4) ln(1+2tanx)dx

caoculate0π4ln(1+2tanx)dx

Answered by mathmax by abdo last updated on 12/Sep/20

A =∫_0 ^(π/4)  ln(1+2tanx)dx  let f(a) =∫_0 ^(π/4) ln(1+atanx)dx  witha>0  f^′ (a) =∫_0 ^(π/4)  ((tanx)/(1+atanx)) dx =_(tanx =t)   ∫_0 ^1 (t/((1+at)(1+t^2 ))) dt let decompose  u(t) =(t/((at+1)(t^2  +1))) ⇒u(t) =(α/(at +1)) +((βt +λ)/(t^(2 ) +1))  α =((−1)/(a((1/a^2 )+1))) =((−a^2 )/(a(1+a^2 ))) =−(a/(a^2  +1))  lim_(t→+∞) tu(t) =0 =(α/a) +β ⇒β =(1/(a^2  +1))  u(0) =0 =α +λ ⇒λ =(a/(a^2  +1)) ⇒u(t) =−(a/((a^2  +1)(at+1)))  +(((t/(a^2  +1))+(a/(a^2  +1)))/(t^2  +1)) ⇒f^′ (a) =−(a/(a^2  +1))∫_0 ^1  (dt/(at +1)) +(1/(a^2  +1))∫_0 ^1  ((t+a)/(t^2  +1)) dt  =−(1/(a^2  +1))[ln(at+1)]_0 ^1   +(1/(2(a^2  +1))) ∫_0 ^1  ((2t)/(1+t^2 ))dt  +(a/(a^2  +1))[arctant]_0 ^1   =−((ln(a+1))/(a^2  +1))+((ln(2))/(2(a^2  +1))) +((πa)/(4(a^2  +1))) ⇒  f(a)=−∫_0 ^a  ((ln(1+x))/(1+x^2 )) dx +((ln2)/2) ∫_0 ^a  (dx/(1+x^2 )) +(π/4) ∫_0 ^a  (x/(1+x^2 )) dx +c  =−∫_0 ^a  ((ln(1+x))/(1+x^2 ))dx +((ln2)/2) arctan(a) +(π/8)ln(1+a^2 ) +c  c=f(0) =0 and A =f(2) =−∫_0 ^2  ((ln(1+x))/(1+x^2 ))dx+((ln2)/2) arctan2+(π/8)ln5  rest calculus of ∫_0 ^2  ((ln(1+x))/(1+x^2 )) dx....be continued...

A=0π4ln(1+2tanx)dxletf(a)=0π4ln(1+atanx)dxwitha>0f(a)=0π4tanx1+atanxdx=tanx=t01t(1+at)(1+t2)dtletdecomposeu(t)=t(at+1)(t2+1)u(t)=αat+1+βt+λt2+1α=1a(1a2+1)=a2a(1+a2)=aa2+1limt+tu(t)=0=αa+ββ=1a2+1u(0)=0=α+λλ=aa2+1u(t)=a(a2+1)(at+1)+ta2+1+aa2+1t2+1f(a)=aa2+101dtat+1+1a2+101t+at2+1dt=1a2+1[ln(at+1)]01+12(a2+1)012t1+t2dt+aa2+1[arctant]01=ln(a+1)a2+1+ln(2)2(a2+1)+πa4(a2+1)f(a)=0aln(1+x)1+x2dx+ln220adx1+x2+π40ax1+x2dx+c=0aln(1+x)1+x2dx+ln22arctan(a)+π8ln(1+a2)+cc=f(0)=0andA=f(2)=02ln(1+x)1+x2dx+ln22arctan2+π8ln5restcalculusof02ln(1+x)1+x2dx....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com