All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 111762 by mathmax by abdo last updated on 04/Sep/20
caoculate∫0π4ln(1+2tanx)dx
Answered by mathmax by abdo last updated on 12/Sep/20
A=∫0π4ln(1+2tanx)dxletf(a)=∫0π4ln(1+atanx)dxwitha>0f′(a)=∫0π4tanx1+atanxdx=tanx=t∫01t(1+at)(1+t2)dtletdecomposeu(t)=t(at+1)(t2+1)⇒u(t)=αat+1+βt+λt2+1α=−1a(1a2+1)=−a2a(1+a2)=−aa2+1limt→+∞tu(t)=0=αa+β⇒β=1a2+1u(0)=0=α+λ⇒λ=aa2+1⇒u(t)=−a(a2+1)(at+1)+ta2+1+aa2+1t2+1⇒f′(a)=−aa2+1∫01dtat+1+1a2+1∫01t+at2+1dt=−1a2+1[ln(at+1)]01+12(a2+1)∫012t1+t2dt+aa2+1[arctant]01=−ln(a+1)a2+1+ln(2)2(a2+1)+πa4(a2+1)⇒f(a)=−∫0aln(1+x)1+x2dx+ln22∫0adx1+x2+π4∫0ax1+x2dx+c=−∫0aln(1+x)1+x2dx+ln22arctan(a)+π8ln(1+a2)+cc=f(0)=0andA=f(2)=−∫02ln(1+x)1+x2dx+ln22arctan2+π8ln5restcalculusof∫02ln(1+x)1+x2dx....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com