Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 111859 by ajfour last updated on 05/Sep/20

I=∫(dx/((x^2 +2x+3)(√(x^2 +x+3)))) = ?  my try..

I=dx(x2+2x+3)x2+x+3=?mytry..

Commented by Sarah85 last updated on 05/Sep/20

my try:  (1.) u=ln (2x+1+2(√(x^2 +x+3)))           x=((e^(2u) −2e^u −11)/(4e^u ))           dx=(√(x^2 +x+3))du  16∫(e^(2u) /(e^(4u) +4e^(3u) +14e^(2u) −44e^u +121))du  (2.) v=e^u            u=ln v           du=(dv/e^u )  16∫(v/(v^4 +4v^3 +14v^2 −44v+121))dv  of course now we must decompose and it′s  theoretically easy but hard to write out...  I don′t think there′s an alternative without  a 4^(th) −degree polynome...

mytry:(1.)u=ln(2x+1+2x2+x+3)x=e2u2eu114eudx=x2+x+3du16e2ue4u+4e3u+14e2u44eu+121du(2.)v=euu=lnvdu=dveu16vv4+4v3+14v244v+121dvofcoursenowwemustdecomposeanditstheoreticallyeasybuthardtowriteout...Idontthinktheresanalternativewithouta4thdegreepolynome...

Commented by MJS_new last updated on 05/Sep/20

good. I would add a 3^(rd)  step  w=v+1 → dv=dw  16∫((w−1)/(w^4 +8w^2 −64w+176))dw  the square factors are  w^2 −2(√(2+2(√3)))w+4(2+(√3)−2(√(−1+(√3))))  and  w^2 +2(√(2+2(√3)))w+4(2+(√3)+2(√(−1+(√3))))  ⇒  16∫((w−1)/(w^4 +8w^2 −64w+176))dw=  =((√3)/6)∫(((√(−1+(√3)))w−4+2(√(2+2(√3))))/(w^2 −2(√(2+2(√3)))w+4(2+(√3)−2(√(−1+(√3))))))dw−  −((√3)/6)∫(((√(−1+(√3)))w+4+2(√(2+2(√3))))/(w^2 +2(√(2+2(√3)))w+4(2+(√3)+2(√(−1+(√3))))))dw  and we can solve these using the formula for  ∫((ax+b)/(x^2 +cx+d))dx  if we must; i.e. if our survival depends on it

good.Iwouldadda3rdstepw=v+1dv=dw16w1w4+8w264w+176dwthesquarefactorsarew222+23w+4(2+321+3)andw2+22+23w+4(2+3+21+3)16w1w4+8w264w+176dw==361+3w4+22+23w222+23w+4(2+321+3)dw361+3w+4+22+23w2+22+23w+4(2+3+21+3)dwandwecansolvetheseusingtheformulaforax+bx2+cx+ddxifwemust;i.e.ifoursurvivaldependsonit

Commented by mathdave last updated on 06/Sep/20

u can only survive a way out only by  using ferrari trick or idea to  decompose d degree 4 to difference of a  two square

ucanonlysurviveawayoutonlybyusingferraritrickorideatodecomposeddegree4todifferenceofatwosquare

Commented by mathdave last updated on 06/Sep/20

should i help u break this 4 degree of  this equation

shouldihelpubreakthis4degreeofthisequation

Commented by mathdave last updated on 06/Sep/20

who told u dat there is no alternative  without degree 4 polynomial,if u  wanna kwn check my working to  see dat

whotoldudatthereisnoalternativewithoutdegree4polynomial,ifuwannakwncheckmyworkingtoseedat

Commented by MJS_new last updated on 06/Sep/20

no help needed, thank you very much.  as you can see (if you take a closer look) I  already decomposed the 4^(th)  degree. all that′s  left is inserting the constants in the well  known formula. no need to re−invent the  wheel.

nohelpneeded,thankyouverymuch.asyoucansee(ifyoutakeacloserlook)Ialreadydecomposedthe4thdegree.allthatsleftisinsertingtheconstantsinthewellknownformula.noneedtoreinventthewheel.

Commented by mathdave last updated on 06/Sep/20

anyhow or watever

anyhoworwatever

Answered by mathdave last updated on 06/Sep/20

solution to   let I=∫(dx/((x^2 +2x+3)(√(x^2 +x+3))))    put x=(((√3)−(√3)t)/(1+t))  and  dx=−((2(√3))/((1+t)^2 ))dt  I=∫((−2(√3)dt)/((((3(1−t)^2 )/((1+t)^2 ))+2(√3)(((1−t))/((1+t)))+3)(√(((3(1−t)^2 )/((1+t)^2 ))+(√3)(((1−t)/(1+t)))+3))))  by simplify we have that  I=∫((−2(√3)(1+t)dt)/((6−2(√3))t^2 +(6+2(√3)))(√((6−(√3))t^2 +(6+(√3))))))  let a=6−2(√3),b=6+2(√3),c=6−(√3),d=6+(√3)  ∫((−2(√3)(1+t)dt)/((at^2 +b)(√(ct^2 +d))))=−2(√3)∫(dt/((at^2 +b)(√(ct^2 +d))))−2(√3)∫(t/((at^2 +b)(√(ct^2 +d))))dt  Let A=∫(dt/((at^2 +b)(√(ct^2 +d))))    let  y=(t/(√(ct^2 +d)))  ,t^2 =((y^2 d)/(1−y^2 c)),dt=((√d)/((1−y^2 c)^(3/2) ))dy  A=∫((y(√d))/(((1−y^2 c)^(3/2) )/([a(((y^2 d)/(1−y^2 c)))+b](√((y^2 d)/(1−y^2 c))))))dy=  A=∫(dy/((ay^2 d+b−y^2 bc)(1−y^2 c)))  A=∫(((bc−ad)dy)/(ad[(bc−ad)y^2 −b]))−∫((cdy)/(ad(cy^2 −1)))  A=((ad−bc)/(ad))∫(dy/((ad−bc)y^2 +b))+(1/(ad))∫(dy/((1/c)−y^2 ))  A=((ad−bc)/(ad(ad−bc)))∫(dy/(y^2 +[(√(b/(ad−bc)))]^2 ))+(1/(ad))∫(dy/(((1/(√c)))^2 −y^2 ))  A=(1/(ad))(√((ad−bc)/b))tan^(−1) [((y(√(ad−bc)))/(√b))]+(1/(ad))×((√c)/2)ln[(1/((√c)/((1/(√c))−y)))+y ]  A=(1/(ad))(√((ad−bc)/b))tan^(−1) [((y(√(ad−bc)))/(√b))]+((√c)/(2ad))ln[((1+y(√c))/(1−y(√c)))]  A=(1/(ad))(√((ad−bc)/b))tan^(−1) [((t(√(ad−bc)))/(√(cbt^2 +bd)))]+((√c)/(2ad))ln[(((√(ct^2 +d))+t(√c))/((√(ct^2 +d))−t(√c)))]....(1)  then B=∫((tdt)/((at^2 +b)(√(ct^2 +d))))=(1/2)∫((d(t^2 ))/((at^2 +b)(√(ct^2 +d))))  B=(1/2)∫(du/((au+b)(√(cu+d))))     (  put u=t^2   ,put p^2 =cu+d,2pdp=cdu)  B=(1/(2c))∫((2pdp)/([a(((−d+p^2 )/c))+b]p))=(c/c)∫(dp/((ap^2 −ad+bc)))  B=∫(dp/(ap^2 +(bc−ad)))=(1/a)∫(dp/(p^2 +(((bc−ad)/a))))  B=(1/a)∫(dp/(p^2 +((√((bc−ad)/a)))))=((√a)/(a(√(bc−ad))))tan^(−1) [((pdp)/(√(bc−ad)))]  B=(1/((√a)(√(bc−ad))))tan^(−1) [((√(acu+da))/(√(bc−ad)))]+k  B=(1/(√(abc−a^2 d)))tan^(−1) [((√(act^2 +ad ))/(√(bc−ad)))]+k.......(2)  then   I=−((2(√3))/(ad))(√((ad−bc)/b))tan^(−1) [((t(√(ad−bc)))/(√(cbt^2 +bd)))]−(((√3)(√c))/(ad))ln[(((√(ct^2 +d))+t(√c))/((√(ct^2 +d))−t(√c)))]      −((2(√3))/(√(abc−a^2 d)))tan^(−1) [((√(act^2 +ad))/(√(bc−ad)))]+k  but t=(((√3)−x)/((√3)+x))  I=−((2(√3))/(ad))(√((ad−bc)/b))tan^(−1) [((((√3)−x)(√(ad−bc)))/(((√3)+x)(√(cb((((√3)−x)/((√3)+x)))^2 +bd))))]       −(((√3)(√c))/(ad))ln[(((√(c((((√3)−x)/((√3)+x)))^2 +d))+((((√3)−x)/((√3)+x)))(√c))/((√(c((((√3)−x)/((√3)+x)))^2 +d))−((((√3)−x)/((√3)+x)))(√c)))]        −((2(√3))/(√(abc−a^2 d)))tan^(−1) [((√(ac((((√3)−x)/((√3)+x)))^2 +ad))/(√(bc−ad)))]+k  where a=6−2(√3),b=6+2(√3),c=6−(√3),d=6+(√3)  by mathdave (05/09/2020)

solutiontoletI=dx(x2+2x+3)x2+x+3putx=33t1+tanddx=23(1+t)2dtI=23dt(3(1t)2(1+t)2+23(1t)(1+t)+3)3(1t)2(1+t)2+3(1t1+t)+3bysimplifywehavethatI=23(1+t)dt(623)t2+(6+23))(63)t2+(6+3)leta=623,b=6+23,c=63,d=6+323(1+t)dt(at2+b)ct2+d=23dt(at2+b)ct2+d23t(at2+b)ct2+ddtLetA=dt(at2+b)ct2+dlety=tct2+d,t2=y2d1y2c,dt=d(1y2c)32dyA=yd(1y2c)32[a(y2d1y2c)+b]y2d1y2cdy=A=dy(ay2d+by2bc)(1y2c)A=(bcad)dyad[(bcad)y2b]cdyad(cy21)A=adbcaddy(adbc)y2+b+1addy1cy2A=adbcad(adbc)dyy2+[badbc]2+1addy(1c)2y2A=1adadbcbtan1[yadbcb]+1ad×c2ln[1c1cy+y]A=1adadbcbtan1[yadbcb]+c2adln[1+yc1yc]A=1adadbcbtan1[tadbccbt2+bd]+c2adln[ct2+d+tcct2+dtc]....(1)thenB=tdt(at2+b)ct2+d=12d(t2)(at2+b)ct2+dB=12du(au+b)cu+d(putu=t2,putp2=cu+d,2pdp=cdu)B=12c2pdp[a(d+p2c)+b]p=ccdp(ap2ad+bc)B=dpap2+(bcad)=1adpp2+(bcada)B=1adpp2+(bcada)=aabcadtan1[pdpbcad]B=1abcadtan1[acu+dabcad]+kB=1abca2dtan1[act2+adbcad]+k.......(2)thenI=23adadbcbtan1[tadbccbt2+bd]3cadln[ct2+d+tcct2+dtc]23abca2dtan1[act2+adbcad]+kbutt=3x3+xI=23adadbcbtan1[(3x)adbc(3+x)cb(3x3+x)2+bd]3cadln[c(3x3+x)2+d+(3x3+x)cc(3x3+x)2+d(3x3+x)c]23abca2dtan1[ac(3x3+x)2+adbcad]+kwherea=623,b=6+23,c=63,d=6+3bymathdave(05/09/2020)

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Answered by ajfour last updated on 06/Sep/20

I=∫(dx/({(x+1)^2 +2}(√((x+(1/2))^2 +((11)/4)))))  let   x+(1/2)=((√(11))/2)tan θ  I=∫((((√(11))/2)sec^2 θdθ)/({((((√(11))tan θ+1)^2 )/4)+2}((√(11))/2)sec θ))     =4∫((sec θdθ)/(((√(11))tan θ+1)^2 +8))     =4∫((cos θdθ)/(11sin^2 θ+(√(11))sin 2θ+9cos^2 θ))    =4∫((cos θdθ)/(11+(√(11))sin 2θ−1−cos 2θ))   I =4∫((cos θdθ)/(10−2(√3)cos (2θ+tan^(−1) (√(11)))))    say   θ+β=φ  ;   β=(1/2)tan^(−1) (√(11))  I=4∫((cos (φ−β)dφ)/(10−2(√3)cos (2φ)))   I =4cos β∫((cos φdφ)/(10−2(√3)+4(√3)sin^2 φ))          −4sin β∫(((−sin φ)dφ)/(10+2(√3)−4(√3)cos^2 φ))+c  −−−−−−−−−−−−−−−−−−  I=((cos β)/( (√3)))×(√((4(√3))/(10−2(√3))))tan^(−1) [(√((4(√3))/(10−2(√3))))sin (θ+β)]     −((sin β)/( (√3)))×(1/2)(√((4(√3))/(10+2(√3))))ln ∣(((√((10+2(√3))/(4(√3))))+cos (θ+β))/( (√((10+2(√3))/(4(√3))))−cos (θ+β)))∣+c    θ=tan^(−1) (((2x+1)/( (√(11)))))  ;  β=(1/2)tan^(−1) (√(11))  ★−−−−−−−−−−−−−−−−★  rough work  tan 2β=((2tan β)/(1−tan^2 β))=(√(11))  ⇒   (√(11))tan^2 β+2tan β−(√(11))=0  tan β=((2(√3)−1)/( (√(11))))  sin β=((2(√3)−1)/( (√(24−4(√3))))) = (√((2(√3)−1)/(4(√3))))  cos β= ((√(11))/( (√(4(√3)))(√(2(√3)−1))))  _____________________________  I=(((3(√2)+(√6))/(12)))tan^(−1) [(√((4(√3))/(10−2(√3))))sin φ]   −((√(3(√3)−3))/(12)) ln ∣(((√(10+2(√3)))+(√(4(√3)))cos φ)/( (√(10+2(√3)))−(√(4(√3)))cos φ))∣+c         .............................................     ∀    tan φ=(((2(√3)+1)/( (√(11)))))(((x+(√3))/( (√3)−x)))  _____________________________  rough work  tan (θ+β)=((((2x+1)/( (√(11))))+((2(√3)−1)/( (√(11)))))/(1−(((2x+1)(2(√3)−1))/(11))))    =(((√(11))(x+(√3)))/(6−(√3)−(2(√3)−1)x)) =(((√(11))(x+(√3)))/((2(√3)−1)((√3)−x)))         −−−−−−−−−−−−−−

I=dx{(x+1)2+2}(x+12)2+114letx+12=112tanθI=112sec2θdθ{(11tanθ+1)24+2}112secθ=4secθdθ(11tanθ+1)2+8=4cosθdθ11sin2θ+11sin2θ+9cos2θ=4cosθdθ11+11sin2θ1cos2θI=4cosθdθ1023cos(2θ+tan111)sayθ+β=ϕ;β=12tan111I=4cos(ϕβ)dϕ1023cos(2ϕ)I=4cosβcosϕdϕ1023+43sin2ϕ4sinβ(sinϕ)dϕ10+2343cos2ϕ+cI=cosβ3×431023tan1[431023sin(θ+β)]sinβ3×124310+23ln10+2343+cos(θ+β)10+2343cos(θ+β)+cθ=tan1(2x+111);β=12tan111roughworktan2β=2tanβ1tan2β=1111tan2β+2tanβ11=0tanβ=23111sinβ=2312443=23143cosβ=1143231_____________________________I=(32+612)tan1[431023sinϕ]33312ln10+23+43cosϕ10+2343cosϕ+c.............................................tanϕ=(23+111)(x+33x)_____________________________roughworktan(θ+β)=2x+111+231111(2x+1)(231)11=11(x+3)63(231)x=11(x+3)(231)(3x)

Commented by ajfour last updated on 06/Sep/20

Isn′t  this alright ?

Isntthisalright?

Commented by MJS_new last updated on 06/Sep/20

I′ll check it tomorrow

Illcheckittomorrow

Commented by mathdave last updated on 06/Sep/20

this cant b true

thiscantbtrue

Commented by MJS_new last updated on 06/Sep/20

it′s right, Sir Aifour. can you finish it?

itsright,SirAifour.canyoufinishit?

Commented by ajfour last updated on 06/Sep/20

thank you Sir!

thankyouSir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com