Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111879 by mathdave last updated on 05/Sep/20

prove that   lim_(n→∞) nΣ_(k=1) ^(n−1) ((ln(k+n)−ln(n))/(k^2 +n^2 ))=(π/8)ln2

$${prove}\:{that}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{ln}\left({k}+{n}\right)−\mathrm{ln}\left({n}\right)}{{k}^{\mathrm{2}} +{n}^{\mathrm{2}} }=\frac{\pi}{\mathrm{8}}\mathrm{ln2} \\ $$

Answered by Dwaipayan Shikari last updated on 05/Sep/20

lim_(n→∞) nΣ_(k=0) ^n ((log((k/n)+1))/(k^2 +n^2 ))=lim_(n→∞) (1/n)Σ_(k=0) ^n ((log((k/n)+1))/((k^2 /n^2 )+1))  =∫_0 ^1 ((log(x+1))/(x^2 +1))dx  =∫_0 ^(π/4) ((log(tanθ+1))/(tan^2 θ+1)).sec^2 θ dθ  =∫_0 ^(π/4) log(sinθ+cosθ)−log(cosθ)  =∫_0 ^(π/4) log((√2))+log(((sinθ+cosθ)/( (√2))))−log(cosθ) dθ  =∫_0 ^(π/4) (1/2)log(2)+[∫_0 ^(π/4) log(cos((π/4)−θ)−log(cosθ))]=I  =(π/8)log(2)+I=(π/8)log(2)  ((∫_0 ^(π/4) log(cos((π/4)−θ))−log(cosθ)=∫_0 ^(π/4) log(cosθ)−log(cos((π/4)−θ))=I  2I=0))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{log}\left(\frac{{k}}{{n}}+\mathrm{1}\right)}{{k}^{\mathrm{2}} +{n}^{\mathrm{2}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{log}\left(\frac{{k}}{{n}}+\mathrm{1}\right)}{\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }+\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{log}\left({tan}\theta+\mathrm{1}\right)}{{tan}^{\mathrm{2}} \theta+\mathrm{1}}.{sec}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left({sin}\theta+{cos}\theta\right)−{log}\left({cos}\theta\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left(\sqrt{\mathrm{2}}\right)+{log}\left(\frac{{sin}\theta+{cos}\theta}{\:\sqrt{\mathrm{2}}}\right)−{log}\left({cos}\theta\right)\:{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{2}\right)+\left[\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left({cos}\left(\frac{\pi}{\mathrm{4}}−\theta\right)−{log}\left({cos}\theta\right)\right)\right]={I} \\ $$$$=\frac{\pi}{\mathrm{8}}{log}\left(\mathrm{2}\right)+{I}=\frac{\pi}{\mathrm{8}}{log}\left(\mathrm{2}\right) \\ $$$$\left(\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left({cos}\left(\frac{\pi}{\mathrm{4}}−\theta\right)\right)−{log}\left({cos}\theta\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left({cos}\theta\right)−{log}\left({cos}\left(\frac{\pi}{\mathrm{4}}−\theta\right)\right)={I}\right.\right. \\ $$$$\left.\mathrm{2}\left.{I}=\mathrm{0}\right)\right) \\ $$

Commented by mathdave last updated on 05/Sep/20

oh no check ur working again

$${oh}\:{no}\:{check}\:{ur}\:{working}\:{again} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 05/Sep/20

  famous  integral and its  answer : (π/8)ln(2)✓

$$\:\:{famous}\:\:{integral}\:{and}\:{its} \\ $$$${answer}\::\:\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)\checkmark \\ $$

Commented by mathdave last updated on 05/Sep/20

this ur working enhhh just dey  somehow

$${this}\:{ur}\:{working}\:{enhhh}\:{just}\:{dey} \\ $$$${somehow}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com