All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 111923 by bemath last updated on 05/Sep/20
bemathlimx→0cos4x3−1cos3x−cos9x?
Answered by bobhans last updated on 05/Sep/20
limx→0cos4x3−1cos3x−cos9x?recalla3−b3=(a−b)(a2+b2+ab)thencos4x3−1=cos4x−1cos24x3+1+cos4x3limx→0cos4x−1cos3x−cos9x.limx→01cos24x3+1+cos4x3=limx→0−12.16x2−12.9x2+12.81x2×13=−13.limx→016x272x2=−227
Answered by mathmax by abdo last updated on 05/Sep/20
letf(x)=(3cos(4x))−1cos(3x)−cos(9x)⇒f(x)=(cos(4x)13−1cos(3x)−cos(9x)wehsvecos(4x)∼1−(4x)22=1−8x2(x∈v(0))⇒(cos(4x))13∼(1−8x2)13∼1−83x2alsocos(3x)∼1−9x22andcos(9x)∼1−81x22⇒f(x)∼−83x2−9x22+812x2⇒f(x)∼−83.36=−227⇒limx→0f(x)=−227
Terms of Service
Privacy Policy
Contact: info@tinkutara.com